首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last two decades, several studies have evaluated plant physiology, growth and survival under forecasted climate changes and the effects of these environmental factors in plants are started to be understood. However, there are few studies evaluating such effects at the tissue or cellular level, especially for plants with photosynthetic C4 metabolism that are believed to respond less to elevated CO2 concentration. For this reason, we tested maize and pearl millet plants to consider cellular physiological responses to induce osmotic stress and acute heat shock. Plants were grown under elevated CO2 concentration and temperature, simulating global climate changes and then were subjected to osmotic stress and acute heat shock in vitro. The results indicated that the growth under elevated CO2 and temperature improved cellular tolerance to osmotic stress and acute heat shock for both species, but maize seemed to benefit more from increased CO2 concentration whereas pearl millet seemed to benefit more from increased temperature. Taken together, the results indicated that the current and expected global climate changes, besides operating differentially in these two species, can similarly affect other C4 plant species in different ecosystems whether undisturbed or managed.  相似文献   

2.
Plant communities around natural CO2 springs have been exposed to elevated CO2 levels over many generations and give us a unique opportunity to investigate the effects of long-term elevated CO2 levels on wild plants. We searched for natural CO2 springs in cool temperate climate regions in Japan and found three springs that were suitable for studying long-term responses of plants to elevated levels of CO2: Ryuzin-numa, Yuno-kawa and Nyuu. At these CO2 springs, the surrounding air was at high CO2 concentration with no toxic gas emissions throughout the growth season, and there was natural vegetation around the springs. At each site, high-CO2 (HC) and low-CO2 (LC) plots were established, and three dominant species at the shrub layers were used for physiological analyses. Although the microenvironments were different among the springs, dicotyledonous species growing at the HC plots tended to have more starch and less nitrogen per unit dry mass in the leaves than those growing at the LC plots. In contrast, monocotyledonous species growing in the HC and LC plots had similar starch and nitrogen concentrations. Photosynthetic rates at the mean growth CO2 concentration were higher in HC plants than LC plants, but photosynthetic rates at a common CO2 concentration were lower in HC plants. Efficiency of water and nitrogen use of leaves at growth CO2 concentration was greatly increased in HC plants. These results suggest that natural plants growing in elevated CO2 levels under cool temperate climate conditions have down-regulated their photosynthetic capacity but that they increased photosynthetic rates and resource use efficiencies due to the direct effect of elevated CO2 concentration.  相似文献   

3.
Xinyou Yin 《Annals of botany》2013,112(3):465-475

Background

Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2].

Analysis

A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth.

Conclusions

The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity.  相似文献   

4.
ABSTRACT

Stochastic upwelling of seawater in the Baltic Sea from the deep, anoxic bottoms may bring low-pH water rich in CO2 close to the surface. Such events may become more frequent with climate change and ongoing ocean acidification (OA). Photoautotrophs, such as macroalgae, which are important foundation species, have been proposed to benefit from increased carbon availability due to reduced energetic cost in carbon acquisition. However, the exact effects of CO2 fertilization may depend on the ambient light environment, as photosynthesis rates depend on available irradiance. In this experimental study, interacting effects of CO2 addition and irradiance on the habitat-forming macroalga Fucus vesiculosus were investigated during two seasons – winter and summer – in the northern Baltic Sea. Growth rates remained unaffected by CO2 or irradiance during both seasons, suggesting that direct effects of elevated CO2 on mature F. vesiculosus are small. Increases in CO2 affected algal elemental ratios by increasing carbon and decreasing nitrogen content, with resulting changes in the C:N ratio, but only in winter. In summer, chlorophyll a content increased under low irradiance. Increases in CO2 caused a decline in light-harvesting efficiency (decrease in Fv/Fm and α) under high irradiance in summer, and conversely increased α under low irradiance. High irradiance caused increases in the maximum relative electron transport rate (rETRmax) in summer, but not in winter. Differences between winter and summer indicate that F. vesiculosus responses to CO2 and irradiance are season-specific. Increases in carbon content during winter could indicate slightly positive effects of CO2 addition in the long run if the extra carbon gained may be capitalized in growth. The results of this study suggest that increases in CO2, either through upwelling or OA, may have positive effects on F. vesiculosus, but these effects are probably small.  相似文献   

5.
Background Increasing attention is being focused on the influence of rapid increases in atmospheric CO2 concentration on nutrient cycling in ecosystems. An understanding of how elevated CO2 affects plant utilization and acquisition of phosphorus (P) will be critical for P management to maintain ecosystem sustainability in P-deficient regions.Scope This review focuses on the impact of elevated CO2 on plant P demand, utilization in plants and P acquisition from soil. Several knowledge gaps on elevated CO2-P associations are highlighted.Conclusions Significant increases in P demand by plants are likely to happen under elevated CO2 due to the stimulation of photosynthesis, and subsequent growth responses. Elevated CO2 alters P acquisition through changes in root morphology and increases in rooting depth. Moreover, the quantity and composition of root exudates are likely to change under elevated CO2, due to the changes in carbon fluxes along the glycolytic pathway and the tricarboxylic acid cycle. As a consequence, these root exudates may lead to P mobilization by the chelation of P from sparingly soluble P complexes, by the alteration of the biochemical environment and by changes to microbial activity in the rhizosphere. Future research on chemical, molecular, microbiological and physiological aspects is needed to improve understanding of how elevated CO2 might affect the use and acquisition of P by plants.  相似文献   

6.
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought‐tolerant biomes in the tropics. These features are broadly consistent with pollen‐based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought‐tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low‐latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial‐interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.  相似文献   

7.
D. J. Beerling 《Oecologia》1996,108(1):29-37
The late-glacial climatic oscillation, 12-10 ka BP, is characterised in ice core oxygen isotope profiles by a rapid and abrupt return to glacial climate. Recent work has shown that associated with this cooling was a drop in atmospheric CO2 concentration of ca. 50 ppm. In this paper, the impact of these environmental changes on 13C discrimination is reported, based on measurements made on a continuous sequence of fossil Salix herbacea leaves from a single site. The plant responses were interpreted using an integrated model of stomatal conductance, CO2 assimilation and intercellular CO2 concentration, influenced by external environmental factors. According to the model, temperature exerts a marked influence on 13C discrimination by leaves and the pattern of 13C changes recorded by the fossil leaves is consistent with other palaeotemperature curves for 12-10 ka BP, particularly the deuterium isotope record from Alaskan Salix woods, which generally reflects ocean temperatures. The gas exchange model correctly accounts for these changes and so permits the reconstruction of ancient rates of leaf CO2 uptake and loss of water vapour in response to the abrupt late-glacial changes in global climate and CO2. The approach provides the required physiological underpinning for extracting quantitative estimates of past temperatures and for contributing an ecophysiological explanation for changes in 13C discrimination in the fossil record.  相似文献   

8.
李小涵  武建军  吕爱锋  刘明 《生态学报》2013,33(9):2936-2943
叶面积指数是作物生长状况的一个重要表征参数,也是研究陆地生态系统的一个重要的参数.当今世界温室气体排放逐年上升,气候变暖趋势明显,对气候变化敏感的农业将受到影响.在全球变化的背景下,采用农业技术转移决策支持系统(DSSAT)系统,通过在黄淮海平原典型站点模拟3种CO2浓度条件下冬小麦在水分充足和水分亏缺2种情境下的生长过程,分析不同CO2浓度下水分亏缺对冬小麦叶面积指数的影响差异.研究发现,CO2浓度升高对叶面积指数增长有促进作用,且在干旱情况下对叶面积指数的正效应比湿润情况下更为明显,在CO2浓度倍增条件下,发生水分亏缺的作物叶面积指数数倍增长.研究结论有助于分析CO2浓度变化对农作物生长过程的影响,为农田水分管理提供依据,又为估算叶面积指数提出了一种模型的方法.  相似文献   

9.

Background and Aims

Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance.

Methods

An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2.

Key Results and Conclusion

In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss λ (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.  相似文献   

10.
Global atmospheric carbon dioxide concentration ([CO2]) is increasing rapidly. The Intergovernmental Panel on Climate Change estimated that atmospheric [CO2] has risen from approximately 280 μmol mol?1 in pre-industrial times to approximately 381 μmol mol?1 at present and will reach 550 μmol mol?1 by 2050. In the absence of strict emission controls, atmospheric [CO2] is likely to reach 730–1020 μmol mol?1 by 2100. Rising atmospheric [CO2] is the primary driver of global warming, but as the principal substrate for photosynthesis it also directly affects the yield and quality of crops. Food quality is receiving much more attentions recently, however, compared with grain yield, our understanding in the response of grain quality to elevated [CO2] is very limited. Rice (Oryza sativa L.) is one of the most important crops in the world and the first staple food in Asia, providing nutrition to a large proportion of the world’s population. Elevated [CO2] leads to numerous physiological changes in rice crops, such as changes in the photosynthesis and assimilate translocation, nutrient uptake and translocation, water relation, and altered gene expression and enzyme activity. These altered processes are very likely to affect the chemical and physical characteristics of rice grains. In this review, we first describe main characteristics of rice grain quality, and then summarize findings in literature related to the impact of elevated [CO2] on grain quality falling into four categories: processing quality, appearance, cooking and eating quality, and nutritional quality, as well as the possible mechanisms responsible for the observed impacts. Elevated [CO2] caused serious deterioration of processing suitability, in particular, head rice percentage was significantly decreased. In most cases, elevated [CO2] increased chalkiness of rice grains. The evaluation of physicochemical characteristics together with starch Rapid Visco Analyser (RVA) properties indicated no change or small changes in cooking and eating quality under elevated [CO2], and these changes could not be detected by sensory taste panel evaluation. Elevated [CO2] significantly decreased nitrogen or protein concentration in rice grains, while in most cases other macro- and micro-nutrients showed no change or decrease in concentration. In addition, the responses of rice quality to elevated [CO2] might be modified by varieties, applied fertilizer rates or gas fumigation methodologies. The available information in the literature indicates a clear tendency of quality deterioration and thus lower commercial value for rice grains grown under a projected high CO2 environment. Understanding the factors causing quality deterioration in rice and the related biological mechanisms might be the utmost important scientific theme in future research. Here we also discuss the necessity of formulating adaptation strategies for rice production in future atmospheric environments, nevertheless, the increase in yield, the improvement in quality and stress resistance of rice should be combined and integrated into the adaptation approaches. Compared with enclosure studies, the field experiments using Free-Air CO2 Enrichment (FACE) system provide sufficient experimental space and the most realistic mimic of a future high CO2 atmosphere, and give scientists perhaps the best opportunity to achieve multiple goals.  相似文献   

11.
土壤CO2及岩溶碳循环影响因素综述   总被引:2,自引:0,他引:2  
赵瑞一  吕现福  蒋建建  段逸凡 《生态学报》2015,35(13):4257-4264
全球碳循环已成为全球气候变化的核心问题之一,岩溶作用对大气CO2浓度的调节以及其与土壤CO2的密切关系也受到了国内外普遍关注。岩溶作用消耗土壤CO2对大气碳库起到了重要的减源作用,对土壤CO2进行研究将有利于进一步揭示岩溶碳循环过程。因此从气候条件、土壤理化性质、土地利用类型等方面综述了土壤CO2的影响因素以及其对岩溶碳循环的影响,并提出其它酸参与到岩溶碳循环中将会减弱岩溶碳汇效应。由于各个因素之间往往相互联系,共同影响土壤CO2和岩溶碳循环,在研究岩溶碳汇时,需以地球系统科学和岩溶动力系统理论为指导,综合考虑大气圈、水圈、岩石圈、生物圈中各种因素的影响。  相似文献   

12.
de Bruin  H. A. R.  Jacobs  C. M. J. 《Plant Ecology》1993,104(1):307-318
This paper gives a brief overview of factors determining evapotranspiration of vegetated surfaces. It indicates which of these factors are sensitive to CO2 enrichment. A qualitative analysis is presented of the impact of large scale climate changes.Data in literature indicate that the surface resistance of vegetated areas may change within the range –25% and +50% if the atmospheric CO2-concentration doubles. The impact of such changes on regional scale transpiration is evaluated using a numerical model in which the interaction between the evapotranspiration and the Planetary Boundary Layer is accounted for. It is concluded that the impact of CO2 enrichment on the transpiration at the regional scale is relatively small for aerodynamically smooth surfaces (between +7% and –11%). For aerodynamically rough surfaces the effects are somewhat larger (between +15% and –21%).  相似文献   

13.
Kimball  B. A.  Mauney  J. R.  Nakayama  F. S.  Idso  S. B. 《Plant Ecology》1993,104(1):65-75
The increasing atmospheric CO2 concentration probably will have significant direct effects on vegetation whether predicted changes in climate occur or not. Averaging over many prior greenhouse and growth chamber studies, plant growth and yield have typically increased more than 30% with a doubling of CO2 concentration. Such a doubling also causes stomatal conductance to decrease about 37%, which typically increases leaf temperatures more than 1 °C, and which may decrease evapotranspiration, although increases in leaf area counteract the latter effect. Interactions between CO2 and climate variables also appear important. In one study the growth increase from near-doubled CO2 ranged from minus 60% at 12 °C to 0% at 19 °C to plus 130% at 34 °C, suggesting that if the climate warms, the average growth response to doubled CO2 could be consistently higher than the 30% mentioned above. Even when growing in nutrient-poor soil, the growth response to elevated CO2 has been large, in contrast to nutrient solution studies which showed little response. Several studies have suggested that under water-stress, the CO2 growth stimulation is as large or large than under wellwatered conditions. Therefore, the direct CO2 effect will compensate somewhat, if not completely, for a hotter drier climate. And if any climate change is small, then plant growth and crop yields will probably be significantly higher in the future high-CO2 world.  相似文献   

14.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

15.
《Palaeoworld》2020,29(4):744-751
During the Paleogene, the Earth experienced a global greenhouse climate, which was much warmer and more humid than the present climate. The present global warming is ascribed to increasing levels of atmospheric CO2 caused by human activity since the industrial revolution; therefore, knowledge of the role of atmospheric CO2 in the thermal climate during the Paleogene will be helpful for understanding current and future climate. However, unlike for the late Cenozoic, atmospheric CO2 reconstructions for the Paleogene are still inconsistent and vary between preindustrial-level to values over 4000 ppmv. In this study, we reconstructed the levels of atmospheric CO2 in the early and middle Paleocene and middle Eocene based on the stomatal index of fossil Metasequoia needles collected from four fossil sites in Canada and Japan. We found the atmospheric CO2 levels during the early and middle Paleocene to be similar to that of the present, and up to twice the present atmospheric CO2 level was found during the middle Eocene. Our estimated atmospheric CO2 level supports the hypothesis that the climate changes during the Paleogene cannot be explained merely by atmospheric CO2 variations, which suggests that atmospheric CO2 might not have always played a critical role in climate change during these ancient epochs and therefore cannot be a direct analogy for the current global warming.  相似文献   

16.
大气中CO2浓度持续升高和全球气候变暖是亟待解决的重大环境问题。自养微生物在环境中广泛分布,能直接参与CO2的同化,因此研究自养微生物同化CO2的分子生态学机制具有重大的科学意义。以往对自养微生物的研究多针对基因组DNA,从DNA水平揭示了不同生态系统中碳同化自养微生物的种群结构和多样性,但这些微生物在生态系统中的具体功能有待进一步的研究。近年来,随着转录组学研究技术和稳定同位素探针技术(SIP)的发展,自养微生物同化CO2的生态机理研究不断深入,这些研究明确揭示了碳同化自养微生物是河流、湖泊和海洋生态系统中CO2固定作用的驱动者,并新发现了一些具有CO2同化功能的微生物群落。基于国内外有关研究进展,从DNA和RNA水平上对自养微生物同化CO2的分子机理以及稳定同位素探针技术(SIP)在碳同化微生物研究中的应用进行了分析和总结,初步展望了RNA-SIP技术在陆地生态系统碳同化微生物分子生态学研究中的前景。同时,探讨了陆地生态系统同化碳的转化和稳定性机理,以期为深入了解生态系统碳循环过程和应对气候变化提供理论依据。  相似文献   

17.
Effect of carbon dioxide concentration on microbial respiration in soil   总被引:6,自引:0,他引:6  
In order to assess the validity of conventional methods for measuring CO2 flux from soil, the relationship between soil microbial respiration and ambient CO2 concentration was studied using an open-flow infra-red gas analyser (IRGA) method. Andosol from an upland field in central Japan was used as a soil sample. Soil microbial respiration activity was depressed with the increase of CO2 concentration in ventilated air from 0 to 1000 ppmv. At 1000 ppmv, the respiration rate was less than half of that at 0 ppmv. Thus, it is likely that soil respiration rate is overestimated by the alkali absorption method, because CO2 concentration in the absorption chamber is much lower than the normal level. Metabolic responses to CO2 concentration were different among groups of soil microorganisms. The bacteria actinomycetes group cultivated on agar medium showed a more sensitive response to the CO2 concentration than the filamentous fungi group.  相似文献   

18.
蒋延玲  周广胜  王玉辉  王慧  石耀辉 《生态学报》2015,35(14):4559-4569
收集了1992—2013年关于模拟CO2浓度升高及气候变化(温度升高、降水变化)对内蒙古地带性草原群落的5个建群种针茅植物(贝加尔针茅、本氏针茅、大针茅、克氏针茅、短花针茅)影响的实验研究结果表明,模拟CO2浓度升高、增温和增雨将提高针茅植物的光合作用和株高生长,但CO2处理时间延长会导致光合适应;温度和降雨变化将改变针茅植物的物候进程,但物种之间反应有差异;CO2浓度升高有助于针茅植物生物量增加,增温和干旱则相反,CO2浓度升高对干旱的影响具有补偿作用;干旱和涝渍胁迫将提高针茅植物植株C/N,CO2浓度升高将加剧水分胁迫下针茅植物植株C/N的增加效应,导致牧草品质下降。由于当前在适应性指标、针茅植物对气候变化协同作用的适应机理及其敏感性研究等方面存在的不足,导致目前无法全面比较各针茅植物对CO2和温度、降水变化的响应差异及其敏感性,因而无法预测未来在全球变化背景下,这几种针茅植物的动态变化及其在地理分布上的迁移替代规律。为科学应对气候变化,未来应加强内蒙古地带性针茅植物的适应性指标、针茅植物对多因子协同作用的适应机理及敏感性研究。  相似文献   

19.
Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub‐arctic sedge fen carbon dioxide (CO2) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw‐down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.  相似文献   

20.
Aim This study makes quantitative global estimates of land suitability for cultivation based on climate and soil constraints. It evaluates further the sensitivity of croplands to any possible changes in climate and atmospheric CO2 concentrations. Location The location is global, geographically explicit. Methods The methods used are spatial data synthesis and analysis and numerical modelling. Results There is a cropland ‘reserve’ of 120%, mainly in tropical South America and Africa. Our climate sensitivity analysis indicates that the southern provinces of Canada, north‐western and north‐central states of the United States, northern Europe, southern Former Soviet Union and the Manchurian plains of China are most sensitive to changes in temperature. The Great Plains region of the United States and north‐eastern China are most sensitive to changes in precipitation. The regions that are sensitive to precipitation change are also sensitive to changes in CO2, but the magnitude is small compared to the influence of direct climate change. We estimate that climate change, as simulated by global climate models, will expand cropland suitability by an additional 16%, mainly in the Northern Hemisphere high latitudes. However, the tropics (mainly Africa, northern South America, Mexico and Central America and Oceania) will experience a small decrease in suitability due to climate change. Main conclusions There is a large reserve of cultivable croplands, mainly in tropical South America and Africa. However, much of this land is under valuable forests or in protected areas. Furthermore, the tropical soils could potentially lose fertility very rapidly once the forest cover is removed. Regions that lie at the margins of temperature or precipitation limitation to cultivation are most sensitive to changes in climate and atmospheric CO2 concentration. It is anticipated that climate change will result in an increase in cropland suitability in the Northern Hemisphere high latitudes (mainly in developed nations), while the tropics will lose suitability (mainly in developing nations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号