首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competition between microorganisms and arthropods has been shown to be an important ecological interaction determining animal development and spatial distribution patterns in saprophagous communities. In fruit-inhabiting Drosophila, variation in insect developmental success is not only determined by species-specific effects of various noxious filamentous fungi but, as suggested by an earlier study, also by additive genetic variation in the ability to successfully withstand the negative impact of the fungi. If this variation represents a direct adaptive response to the degree to which insect breeding substrates are infested with harmful fungi, genetic variation for successful development in the presence of fungi could be maintained by variation in infestation of resource patches with fungi. We selected for the ability to resist the negative influence of mould by maintaining replicated Drosophila melanogaster populations on substrates infested with Aspergillus nidulans. After five cycles of exposure to the fungus during the larval stage, the selected populations were compared with unselected control populations regarding adult survival and reproduction to reveal an evolved resistance against the fungal competitor. On fungus-infested larval feeding substrates, emerged adults from mould-selected populations had higher survival rates and higher early fecundity than the control populations. In the unselected populations, females had higher mortality rates than males, and a high proportion of both females and males appeared to be unable to lay eggs or fertilise eggs, respectively. When larvae developed on non-infested food we found indications of a loss of resistance to abiotic and starvation stress in the adult stage in flies from the selected populations. This suggests that there are costs associated with an increase in resistance against the microbial competitor. We discuss the underlying mechanisms that might have selected for increased resistance against harmful fungi.  相似文献   

2.
Rohlfs M 《Oecologia》2008,155(1):161-168
Although still underrepresented in ecological research, competitive interactions between distantly related organisms (so-called “interkingdom competition”) are expected to be widespread in various ecosystems, with yet unknown consequences for, e.g. trophic interactions. In the model host–parasitoid system Drosophila melanogaster–Asobara tabida, toxic filamentous fungi have been shown to be serious competitors that critically affect the density-dependent survival of host Drosophila larvae. This study investigates the extent to which the competing mould Aspergillus niger affects key properties of the well-studied Drosophila–parasitoid system and how the host–parasitoid interaction influences the microbial competitor. In contrast to slightly positive density-dependent host mortality under mould-free conditions, competing A. niger mediated a strong Allee effect for parasitised larvae, i.e. mortality decreased with increasing larval density. It was found that the common toxic fungal metabolite kojic acid is not responsible for higher death rates in parasitised larvae. Single parasitised Drosophila larvae were less harmful to fungal reproduction than unparasitised larvae, but this effect vanished with an increase in larval density. As predicted from the negative effect of fungi on host survival and thus on parasitoid fitness at low larval densities, A. tabida females spent less time foraging in fungus-infested patches. Interestingly, even though high host larval densities increased host survival, parasitoids still reduced their search efforts in fungus-infested patches, indicating a benefit for host larvae from feeding in the presence of noxious mould. Thus, this experimental study provides evidence of the potentially important role of interkingdom competition in determining trophic interactions in saprophagous animal communities and the dynamics of both host–parasitoid and microbial populations.  相似文献   

3.
BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of investigating the role of inter-kingdom competition as a potential driving force in the evolution of spatial behaviour in insects.  相似文献   

4.
In addition to their fundamental role in nutrient recycling, saprobiotic microorganisms may be considered as typical consumers of food‐limited ephemeral resource patches. As such, they may be engaged in inter‐specific competition with saprophagous animals feeding from the same resource. Bacteria and filamentous fungi are known to synthesise secondary metabolites, some of which are toxic and have been proposed to deter or harm animals. The microorganisms may, however, also be negatively affected if saprophagous animals do not avoid microbe‐laden resources but feed in the presence of microbial competitors. We hypothesised that filamentous fungi compete with saprophagous insects, whereby secondary metabolites provide a chemical shield against the insect competitors. For testing this, we developed a new ecological model system representing a case of animal–microbe competition between saprobiotic organisms, comprising Drosophila melanogaster and species of the fungus Aspergillus (A. nidulans, A. fumigatus, A. flavus). Infestation of Drosophila breeding substrate with proliferating fungal colonies caused graduated larval mortality that strongly depended on mould species and colony age. Confrontation with conidiospores only, did not result in significant changes in larval survival, suggesting that insect death may not be ascribed to pathogenic effects. When confronted with colonies of transgenic fungi that lack the ability to express the global secondary metabolite regulator LaeA (ΔlaeA), larval mortality was significantly reduced compared to the impact of the wild type strains. Yet, also in the ΔlaeA strains, inter‐specific variation in the influence on insect growth occurred. Competition with Drosophila larvae impaired fungal growth, however, wild type colonies of A. nidulans and A. flavus recovered more rapidly from insect competition than the corresponding ΔlaeA mutants (not in A. fumigatus). Our findings provide genetic evidence that toxic secondary metabolites synthesised by saprotrophic fungi may serve as a means to combat insect competitors. Variation in the ability of LaeA to control expression of various secondary metabolite gene clusters might explain the observed species‐specific variation in DrosophilaAspergillus competition.  相似文献   

5.
Abstract   The larval stages of saprophagous insects and filamentous fungi have been demonstrated to be serious competitors on decaying organic matter. When filamentous fungi appear to be competitively superior, fungal mycotoxins have frequently been suggested to constitute chemical weapons, causing high mortality among insect larvae. In this study, we tested whether typical fungal secondary compounds can indeed be considered as the underlying mechanism of interference competition between filamentous fungi and various saprophagous Drosophila species. In contrast to our expectation, we found no grand mycotoxin-specific effects, but insect survival appeared to be generally determined by complex interaction between toxin identity, toxin concentration and insect species. Three out of five drosophilids seemed to be equally affected by the mycotoxins used in this study, whereas two species showed toxin-specific changes in survival. Only two (Kojic acid and Ochratoxin A) out of seven mycotoxins caused insect-specific responses. Moreover, we discovered correlations between survival in toxin-free and spoiled substrates, which may indicate an interrelationship between intra-specific competitive ability and resistance to mycotoxins. We discuss the significance of mycotoxins as underlying mechanisms driving competitive insect–fungus interactions.  相似文献   

6.
Imasheva AG  Bubliy OA 《Hereditas》2003,138(3):193-199
Effects of three different larval densities (low, intermediate and high) on phenotypic and genetic variation of four morphological traits (thorax and wing length, sternopleural and abdominal bristle number) were studied in Drosophila melanogaster using the isofemale line technique. Phenotypic variation was found to increase at high larval density in all traits examined. Environmental variance for three traits (exception was sternopleural bristle number) and fluctuating asymmetry for both bilateral traits were also increased under high density conditions. For estimates of genetic variability (among isofemale lines variance, heritability and evolvability), no statistically significant differences among density regimes were detected. However, the trends in changes of these estimates across densities indicated a possibility for enhanced genetic variation under larval crowding for all traits except abdominal bristle number. For the latter trait, genetic variation seemed not to be dependent on density regime. Generally, two metric traits (thorax and wing length) were more affected by larval crowding than two meristic ones (sternopleural and abdominal bristle number). The Results are in complete agreement with those previously obtained for D. melanogaster using extreme temperatures as stress-factors.  相似文献   

7.
The flight ability ofDrosophila aldrichi (Patterson & Crow) andD. buzzatii (Patterson & Wheeler) using tethered flights, was measured with respect to age-related changes, genetic variation and adult body size variation induced by rearing at different larval densities.Drosophila buzzatii flew for much longer thanD. aldrichi, especially females, but age-related changes in flight duration were significant only forD. aldrichi. Effects of body size on flight ability were significant inD. buzzatii, but not inD. aldrichi. InD. buzzatii, there was a significant genotype-environment interaction (larval density × line) for flight duration, with short and average flight duration isofemale lines showing longer flights, but a long flight duration line shorter flights as body size decreased (i.e., as larval density increased). Heritability estimates for flight duration were similar in the two species, but flight duration showed no significant genetic correlations with developmental time, body size or wing dimensions (except for one wing dimension inD. buzzatii). Although not significantly different between the species, heritabilities for life-history traits (adult size and developmental time) showed contrasting patterns — with higher heritability for body size (body weight and thorax length) inD. buzzatii, and higher for developmental time inD. aldrichi. In agreement with limited previous field evidence,D. buzzatii is better adapted for colonization than isD. aldrichi.  相似文献   

8.
The cactophilic species,Drosophila buzzatii, normally breeds in decaying pockets ofOpuntia cladodes, in which there is a complex interaction with the microbial flora, especially yeast species. Isofemale lines were used to estimate genetic variation among larvae reared on their natural feeding substrate. Four naturally occurring cactophilic yeast species isolated from the same Tunisian oasis as theDrosophila population were used. Two fitness components were studied for each line, viability and developmental time. Genetic variations amongD. buzzatii lines were observed for both traits. A significant yeast species x isofemale line interaction for viability was also evidenced, suggesting the occurrence of specialized genotypes for the utilization of breeding substrates. This genetic heterogeneity in the natural population may favor a better adaptation to the patchily distribution of yeasts.  相似文献   

9.
Female fruit flies, Drosophila melanogaster, lay their eggs on decaying plant material. Foraging fly larvae strongly depend on the availability of dietary microbes, such as yeasts, to reach the adult stage. In contrast, strong interference competition with filamentous fungi can cause high mortality among Drosophila larvae. Given that many insects are known for employing beneficial microbes to combat antagonistic ones, we hypothesized that fly larvae engaged in competition with the noxious mould Aspergillus nidulans benefit from the presence of dietary yeast species, especially when they are associated with increasingly species rich yeast communities (ranging from one to six yeast species per community). On a nutrient‐limited fruit substrate infested with A. nidulans, both larval survival and development time were positively affected by more diverse yeast communities. On a mould‐free fruit substrate, merely larval development but not survival was found to be affected by increasing species richness of dietary yeasts. Not only yeast diversity had an effect on D. melanogaster life‐history traits, but also the identity of the yeast combinations. These findings demonstrate the importance of the structure and diversity of microbial communities in mutualistic animal–microbe interactions.  相似文献   

10.
Abstract. 1. Recent studies have demonstrated the existence of positive density dependence in the survival and development of Drosophila (the so‐called Allee effect); however the underlying mechanisms of such Allee effects have remained elusive. Competition with filamentous fungi have often been suggested to be involved in causing high mortality at low larval density, but it has not yet been explicitly tested if the well known spatial aggregation of insect eggs yields a fitness benefit for the developing larvae in the presence of noxious moulds. 2. Using Drosophila melanogaster, the present study tested whether larval survival is greater in aggregations when confronted with various combinations of three representative mould species (Aspergillus, Alternaria, and Penicillium) and a head start for fungal development. 3. High rates of fungal‐dependent mortality and significant positive density‐dependent larval survival (i.e. Allee effects) were observed when larvae were confronted with food resources containing established colonies of Aspergillus or Alternaria. Neither the simultaneous transfer of Aspergillus or Alternaria spores with larvae to food patches nor food infections with Penicillium affected insect larval development. 4. Significant correlations between mould growth and larval survival could be identified, although the patterns that emerged were shown to be inconsistent when the effects were compared between fungal species and fungal priority. Because mould growth only partly explained larval survival, the influence of other fungal‐borne factors, e.g. mycotoxins, needs to be elucidated in order to understand the mechanistic basis of insect–mould interactions. 5. These results are the first to argue convincingly for moulds being involved in mediating Allee effects for insects on ephemeral resources; however they also demonstrate an unexpected diversity in insect–mould interactions. Considering this diversity may be important in understanding insect spatial ecology.  相似文献   

11.
The predatory mite Neoseiulus womersleyi shows a significant correlation between its olfactory response and dispersal tendency in different geographical populations. This study investigated the genetic background of the relationship using isofemale lines. Y-tube olfactometer tests confirmed that there was a genetic component in predator response to herbivore-induced plant volatiles. Wind tunnel tests in the absence of the herbivore-induced plant volatiles revealed that the dispersal tendencies of N. womersleyi exhibited genetic variation among isofemale lines, and other experiments revealed the existence of significant differences in prey consumption rate, fecundity, and developmental time. However, there was no genetic correlation between behavioral traits (olfactory response, innate dispersal) and the other traits, suggesting that the positive correlation between the behavioral traits was not caused by genetic factors.  相似文献   

12.
Though a great deal of research focuses on the range expansion and presence of adult zebra mussels, there is still a need to understand the processes of larval settlement and how that relates to adult populations. There is evidence that marine bivalves preferentially settle on filamentous substrates such as hydroid colonies and algae; however, similar studies are rare in freshwater systems. We examined the importance of filamentous substrate for the settlement of the zebra mussel (Dreissena polymorpha) larvae by deploying PVC settlement plates with and without polypropylene filaments in the Bark River for a 6-week period. Larval supply was monitored weekly. Our results suggest that artificial filaments facilitated recruitment, primarily by increasing surface area available for attachment. Mussels on artificial filaments were significantly smaller in size than mussels attached to filamentous or control plate surfaces, providing some evidence that mussels may detach from filamentous substrate after initial settlement. This study adds to our general understanding about the role of filamentous substrates in the process of larval settlement and suggests that substrates colonized by filamentous epibionts may face increased risk of fouling by zebra mussels. An erratum to this article is available at .  相似文献   

13.
Abstract 1. Aggregation pheromones can evolve when individuals benefit from clustering. Such a situation can arise with an Allee effect, i.e. a positive relationship between individual fitness and density of conspecifics. Aggregation pheromone in Drosophila induces aggregated oviposition. The aim of the work reported here was to identify an Allee effect in the larval resource exploitation by Drosophila melanogaster, which could explain the evolution of aggregation pheromone in this species. 2. It is hypothesised that an Allee effect in D. melanogaster larvae arises from an increased efficiency of a group of larvae to temper fungal growth on their feeding substrate. To test this hypothesis, standard apple substrates were infested with specified numbers of larvae, and their survival and development were monitored. A potential beneficial effect of the presence of adult flies was also investigated by incubating a varying number of adults on the substrate before introducing the larvae. Adults inoculate substrates with yeast, on which the larvae feed. 3. Fungal growth was related negatively to larval survival and the size of the emerging flies. Although the fungal growth on the substrate was largely reduced at increased larval densities, the measurements of fitness components indicated no Allee effect between larval densities and larval fitness, but rather indicated larval competition. 4. In contrast, increased adult densities on the substrates prior to larval development yielded higher survival of the larvae, larger emerging flies, and also reduced fungal growth on the substrates. Hence, adults enhanced the quality of the larval substrate and significant benefits of aggregated oviposition in fruit flies were shown. Experiments with synthetic pheromone indicated that the aggregation pheromone itself did not contribute directly to the quality of the larval resource. 5. The interaction among adults, micro‐organisms, and larval growth is discussed in relation to the consequences for total fitness.  相似文献   

14.
Large amounts of genetic variation for wing length and wing area were demonstrated both within and between Drosophila melanogaster populations along a latitudinal gradient in South America. Wing length and wing area showed a strong positive correlation with latitude in both wild flies and laboratory-raised descendants. Large population differences were observed for heritability and coefficient of variation of these two traits, whereas relatively small population differences were found for development time, viability, pupal mortality, sex ratio and their norms of reaction to four developmental temperatures. No clear-cut latitudinal clines were established for these life-history characters. These results are discussed in the light of Bergmann's Rule and the relation between larval development and adult body size.  相似文献   

15.
The size of weapons and testes can be central to male reproductive success. Yet, the expression of these traits is often extremely variable. Studies are needed that take a more complete organism perspective, investigating the sources of variation in both traits simultaneously and using developmental conditions that mimic those in nature. In this study, we investigated the components of variation in weapon and testis sizes using the leaf‐footed cactus bug, Narnia femorata (Hemiptera: Coreidae) on three natural developmental diets. We show that the developmental diet has profound effects on both weapon and testis expression and scaling. Intriguingly, males in the medium‐quality diet express large weapons but have relatively tiny testes, suggesting complex allocation decisions. We also find that heritability, evolvability, and additive genetic variation are highest in the high‐quality diet for testis and body mass. This result suggests that these traits may have an enhanced ability to respond to selection during a small window of time each year when this diet is available. Taken together, these results illustrate that normal, seasonal fluctuations in the nutritional environment may play a large role in the expression of sexually selected traits and the ability of these traits to respond to selection.  相似文献   

16.
Rapid larval growth in insects may be selected for by rapid ephemeral phenological changes in food resources modifying the structure of phenotypic and genetic (co)variation in and among individual traits. We studied the relative effects of three processes which can modify expression of additive genetic and nongenetic variation in traits. First, natural selection tends to erode genetic variation in fitness-related traits. Second, there may be high variance even in traits closely coupled with fitness, if these traits are themselves products of variable lower level traits. Third, traits may be canalized by developmental processes which reduce phenotypic variation. Moreover, we investigated the phenotypic and genetic role played by the underlying traits in attaining simultaneously both large size and short development time. We measured phenotypic and genetic (co)variation in several pre- and post-ingestive foraging traits, growth, development rate, development time and size, together forming a hierarchical network of traits, in the larvae of a flush feeding geometrid, Epirrita autumnata. Rapid larval growth rate and high pupal mass are closely related to fitness in E. autumnata. Traits closely associated with larval growth displayed low levels of additive genetic variation, indicating that genetic variability may have been exhausted by selection for rapid growth. The body size of E. autumnata, in spite of its close correlation with fitness, exhibited a significant additive genetic variation, possiblye because caterpillar size is the outcome of many underlying heritable traits. The low level traits in the hierarchical net, number (indicating larval movements) and size of feeding bouts in leaves, relative consumption rate and efficiency of conversion of ingested food, displayed high levels of residual variation. High residual variation in consumption and physiological ability to handle leaf material resulted from their flexibility which reduced variation in growth rate, i.e. growth rate was canalized. We did not detect a trade-off between development time and final size. On the contrary, large pupal masses were attained by short larval periods, and this relationship was strongly genetically determined, suggesting that both developmental time and final size are expressions of the same developmental process (vigorous growth) and the same genes (or linkage disequilibrium).  相似文献   

17.
A number of hypotheses have been proposed about the association between developmental stability phenotypic variability, heritability, and environmental stress. Stress is often considered to increase both the asymmetry and phenotypic variability of bilateral traits, although this may depend on trait heritability. Empirical studies of such associations often yield inconsistent results. This may reflect the diversity of traits and conditions used or a low repeatability of any associations. To test for repeatable associations between these variables, multiply replicated experiments were undertaken on Drosophila melanogaster using a combination stress at the egg, larval and adult stages of reduced protein, ethanol in the medium, and a cold shock. Both metric and meristic traits were measured and levels of heritable variation for each trait estimated by maximum likelihood and parent-offspring regression over three generations. Trait means were reduced by stress, whereas among-individual variation increased Fluctuating asymmetry (FA) was increased by stress in some cases, but few comparisons were significant. Only one trait orbital bristle, showed consistent increases in FA. Changes in trait means, trait phenotypic variability, and developmental stability as a result of stress were not correlated. Extreme phenotypes tended to have higher levels of FA but only the results for orbital bristles were significant. All traits had low to intermediate heritabilities except orbital bristle, which showed no heritable variation. Only traits with low heritability and high levels of phenotypic variability may show consistent increases in FA under stress. Overall, the independence of phenotypic variability, plasticity, and the developmental stability of traits extend to changes in these measures under stressful conditions.  相似文献   

18.
Populations of the sedges Cyperus virens Michx. and C. pseudovegetus Steud. (Cyperaceae) in Louisiana often contain individuals infected by the systemic fungal endophyte Balansia cyperi Edg. (Clavicipitaceae, Ascomycetes). Related fungal endophytes infecting grasses are known to have detrimental effects on insect and mammalian herbivores consuming infected plants. In this study herbivory of infected and uninfected sedges was compared in two laboratory experiments. Newly hatched larvae of the fall armyworm (Spodoptera frugiperda [J. E. Smith], Noctuidae, Lepidoptera) were reared on leaves from either infected or uninfected plants of C. virens and C. pseudovegetus grown in the greenhouse. Survival, growth, and development of each insect were monitored. For both sedges larval survival and rate of weight gain were reduced, and length of the larval period was increased for larvae reared on leaves from infected plants compared to larvae reared on leaves from uninfected plants. The results of this study parallel results obtained from grasses, suggesting that the endophyte may defend its host against herbivory in natural populations.  相似文献   

19.
20.
The genetic and ecological basis of viability and developmental time differences between Drosophila buzzatii and D. koepferae were analysed using the isofemale line technique. Several isofemale lines were sampled from pairs of allopatric/sympatric populations of each species. Flies were reared in media prepared with decaying tissues of two of the main natural cactus hosts of each species. This experimental design enabled us to evaluate the relative contribution of phenotypic plasticity, genetic variation and genotype by environment interaction (G x E) to total phenotypic variation for two fitness traits, viability and developmental time. Our results revealed significant G x E in both traits, suggesting that the maintenance of genetic variation can be explained, at least in part, by diversifying selection in different patches of a heterogeneous environment in both species. However, the relative importance of the factors involved in the G x E varied between traits and populations within species. For viability, the G x E can be mainly attributed to changes in the rank order of lines across cacti. However, the pattern was different for developmental time. In D. buzzatii the G x E can be mainly accounted for by changes in among line variance across cacti, whereas changes in the rank order of lines across cacti was the main component in D. koepferae. These dissimilar patterns of variation between traits and species suggest that the evolutionary forces shaping genetic variation for developmental time and viability vary between populations within species and between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号