首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用GC-MS技术鉴定水培烟草Burley及K326在幼苗期不同生长阶段的根系分泌物;并用不同浓度邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DIOP)溶液浇灌盆栽烟草幼苗,研究其根系抗氧化性能变化。结果如下:(1)Burley根系分泌物主要有3类化合物,其中自毒物质邻苯二甲酸酯(PAEs)在二叶龄期、四叶龄期、六叶龄期的相对含量分别为7.6%、0.3%、未检出;而K326根系分泌物主要有9类化合物,PAEs在二叶龄期、四叶龄期、六叶龄期的相对含量分别为35.6%、51.3%、2.2%。(2)浓度高于0.1 mmol/L的PAEs使根中超氧阴离子自由基产生的速率显著(P0.05)增加;随着DIOP及DBP浓度的增加,超氧化物歧化酶、过氧化氢酶活性增加,在0.5 mmol/L时达到最大,然后随着处理浓度的增加而下降。丙二醛的浓度随着这两种PAEs处理浓度的增加而增大。结果表明:烟草根系分泌的自毒物质PAEs达到0.5 mmol/L时,能降低根系的抗氧化性能,造成根尖细胞膜系统的氧化损伤,引起根吸收功能等一系列生理生化变化,并最终表现出自毒作用。  相似文献   

2.
Blast, caused by the fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Phenylalanine ammonia lyase (PAL) is a key enzyme in the phenylpropanoid pathway, which leads to the biosynthesis of defense‐related phytohormone salicylic acid (SA) and flavonoid‐type phytoalexins sakuranetin and naringenin. However, the roles and biochemical features of individual rice PALs in defense responses to pathogens remain unclear. Here, we report that rice OsPAL06, which can catalyze the formation of trans‐cinnamate using l ‐phenylalanine, is involved in rice root–M. oryzae interaction. OsPAL06‐knockout mutant showed increased susceptibility to M. oryzae invaded from roots and developed typical leaf blast symptoms, accompanied by nearly complete disappearance of sakuranetin and naringenin and a two‐third reduction of the SA level in roots. This mutant also showed compensatively induced expression of chalcone synthase, which is involved in flavonoid biosynthesis, isochorismate synthase 1, which is putatively involved in SA synthesis via another pathway, reduced jasmonate content and increased ethylene content. These results suggest that OsPAL06 is a positive regulator in preventing M. oryzae infection from roots. It may regulate defense by promoting both phytoalexin accumulation and SA signaling that synergistically and antagonistically interacts with jasmonate‐ and ethylene‐dependent signaling, respectively.  相似文献   

3.
Abstract. Rape ( Brassica napus [L.]) plants were cultivated for 25 d with axenic roots in a growth system with quartz sand and circulating nutrient solution. After a water stress period of 24h. fresh nutrient solution was added and root exudates were collected 3d later. The stress did not cause significant differences in the weights between the stressed and the control plants. The stressed plants tended to exude more soluble organic carbon than the control plants. This was not reflected in the amounts of low molecular weight carbohydrates exuded. A significantly lower proportion of the soluble organic carbon exuded by the stressed plants was made up of amino acids in comparison with the control plants, 7% and 28% respectively. Exuded hydrophobic substances could be recovered from the sand particles. The stressed plants exuded more sterols than the control plants, and an increased number of polar lipid types. The exudates of the stressed and control plants also differed regarding their fatty acid composition.  相似文献   

4.
5.
Kim YS  Kim TW  Kim SK 《Phytochemistry》2005,66(9):1000-1006
GC-MS analysis revealed that primary roots of maize contain 6-deoxocathasterone, 6-deoxoteasterone and 6-deoxotyphasterol. These brassinosteroids, and the previously identified campesterol, campestanol, 6-deoxocastasterone and castasterone, in the roots are members of a biosynthetic pathway to castasterone, namely the late C-6 oxidation pathway, suggesting that its biosynthetic pathway is operative in the roots. To verify this, a cell-free enzyme extract was prepared from maize roots, and enzymatic conversions from campesterol to castasterone through the aforementioned sterols and brassinosteroids were examined. The presence for the biosynthetic sequences, campesterol-->24-methylcholest-4-en-3beta-ol-->24-methylcholest-4-en-3-one-->24-methylcholest-5 alpha-cholestan-3-one-->campestanol and 6-deoxoteasterone-->6-deoxo-3-dehydroteasterone-->6-deoxotyphasterol-->6-deoxocastasterone-->castasterone were demonstrated. These results indicate that maize roots contain a complete set of enzymes involved in the late C-6 oxidation pathway, thereby demonstrating that endogenous brassinosteroids are biosynthesized in the roots.  相似文献   

6.
In rice ( Oryza sativa ) seedlings, continuous white-light irradiation inhibited the growth of seminal roots but promoted the growth of crown roots. In this study, we examined the mechanisms of photoinhibition of seminal root growth. Photoinhibition occurred in the absence of nitrogen but increased with increasing nitrogen concentrations. In the presence of nitrogen, photoinhibition was correlated with coiling of the root tips. The seminal roots were most photosensitive 48–72 h after germination during the 7-day period after germination. White-light irradiation for at least 6 h was required for photoinhibition, and the Bunsen–Roscoe law of reciprocity was not observed. Experiments with phytochrome mutants showed that far-red light was perceived exclusively by phyA, red light was perceived by both phyA and phyB, and phyC had little or no role in growth inhibition or coiling of the seminal roots. These results also suggest that other blue-light photoreceptors are involved in growth inhibition of the seminal roots. Fluence-response curve analyses showed that phyA and phyB control very low-fluence response and low-fluence response, respectively, in the seminal roots. This was essentially the same as the growth inhibition previously observed at the late stage of coleoptile development (80 h after germination). The photoperceptive site for the root growth inhibition appeared to be the roots themselves. All three phytochrome species of rice were detected immunochemically in roots.  相似文献   

7.
铝胁迫下水稻幼苗根系的生理特性   总被引:3,自引:1,他引:2  
以4叶1心期的水稻幼苗为材料,在水培条件下,研究了0、0.5和7.5 mmol·L-1Al胁迫下水稻Al敏感品种IR24、耐Al品种金优725和两优培九幼苗根系的生理特性.结果表明:在7.5 mmol·L-1Al胁迫下,耐Al品种根系活力下降幅度远小于Al敏感品种,Al敏感品种H2O2含量较Al耐性品种高.在Al胁迫下,各品种根系线粒体中CAT的增加幅度较小;IR24和金优725根系的线粒体POD活性随Al胁迫浓度的增加先升后降,两优培九POD活性则呈增加趋势;IR24根系线粒体APX活性随Al胁迫浓度的增加先升后降,金优725和两优培九的线粒体APX活性则呈上升趋势.随Al胁迫浓度的增加,各品种根系谷氨酸含量先增加后下降,柠檬酸含量下降,磷酸烯醇式丙酮酸含量增加.Al敏感品种抗氰呼吸速率占总呼吸的比率较耐Al品种明显降低.  相似文献   

8.
Low root temperature causes a decrease in water uptake, which leads to mineral and nutrient deficiencies with potentially decreased root and shoot growth. Differential temperature effects in plants have been studied extensively, however, the effect of root chilling on the global protein expression in shoots has not been explored. In this study, we imposed chilling temperatures on roots of rice plants while maintaining shoots at optimum atmospheric temperature. Shoot materials (growing zones and leaves) were harvested at five points over a time course of four days, including a two‐day recovery period. Proteins were quantified by tandem mass tags and triple stage MS, using a method developed to overcome ratio compression in isobaric‐labelled quantitation. Over 3000 proteins in each of the tissues were quantified by multiple peptides. Proteins significantly differentially expressed as compared with the control included abscisic acid‐responsive and drought‐associated proteins. The data also contained evidence of a possible induction of a sugar signalling pathway.  相似文献   

9.
Nigam  Rashmi  Srivastava  Shalini  Prakash  Satya  Srivastava  M. M. 《Plant and Soil》2001,230(1):107-113
The present work highlights metal-organic acid interactions with special reference to their plant availability. Pot experiments were conducted to investigate the effect of various organic (carboxylic and amino) acids on the uptake and translocation of root-absorbed Cd by maize (Zea mays) plants grown in sand and soil culture. Statistically significant increases in Cd accumulation from Cd-treated plants in the presence of increasing concentrations of organic acids, suggest the existence of Cd-organic acid interactions in the soil-plant system. In order to support the above hypothesis of formation of organically bound Cd, separate experiments were performed to synthesize and estimate its various forms viz. cationic, anionic and neutral. The chemical nature of the organically bound forms was ascertained by electrophoretic experiments. Amino acids have been found to be less effective in the mobilisation of cadmium compared to carboxylic acids. The results are discussed on the basis of the potential of organic acids to form complexes with Cd.  相似文献   

10.
The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower.Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone.We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms.  相似文献   

11.
The effects of Cd on changes in proline level and peroxidase activity in roots of rice seedlings were investigated. CdCl2 was effective in inhibiting root growth and in accumulating proline in roots. The inhibition of root growth by Cd is reversible. The reduction of root growth induced by Cd is closely associated with accumulation of proline in roots. External application of proline markedly inhibited root growth of rice seedlings in the absence of Cd. Ionically bound, but not soluble, peroxidase activity in roots was increased by CdCl2. Proline treatment also resulted in an increase in ionically bound peroxidase activity in roots. The relationship between growth inhibition of roots induced by Cd and changes of proline level and peroxidase activity is discussed.Abbreviations POX peroxidase  相似文献   

12.
Peroxidase is exuded from roots of Festuca rubra under axenic conditions. No phenolase was detected. Peroxidase can use phenolic acids. probably differentially, as hydrogen donors for the H2O2 substrate and could thus have an effect on the qualitative and quantitative determinations of phenolic acids also exuded by plants.  相似文献   

13.
Soluble extracts from mycelia and conidia of two strains ofCeratocyslis fimbriata induced formation of terpenes in sweetpotato root tissue. Factors inducing terpene formation are water-or 0.02 M KCl-soluble, heat stable, organic solvent-insoluble,and dialyzable, and have neither cationic nor anionic properties.They caused cellular injury of root tissue, accompanied by productionof ethylene. 1This paper constitutes Part 115 of the Phytopathological Chemistryof Sweet Potato with Black Rot and Injury, and Contributionof Research Branch, Agriculture Canada, Winnipeg, Canada. Thiswork was supported in part by a grant from the Ministry of Education,Japan. 2Present address: Research Branch, Research Station, AgricultureCanada, Winnipeg, Manitoba, Canada. (Received July 27, 1974; )  相似文献   

14.
Lin  Chuan Chi  Kao  Ching Huei 《Plant and Soil》1999,216(1-2):147-153
The changes in ionically bound peroxidase activity in roots of NaCl-stressed rice seedlings and their correlation with root growth were investigated. Increasing concentrations of NaCl from 50 to 150 mM progressively decreases root growth. The reduction of root growth by NaCl is closely correlated with the increase in ionically bound peroxidase activity. Since proline and ammonium accumulations are associated with root growth inhibition caused by NaCl, we determined the effects of proline or NH4Cl on root growth and ionically bound peroxidase activity in roots. External application of proline or NH4Cl markedly inhibited root growth and increased ionically bound peroxidase activity in roots of rice seedlings in the absence of NaCl. An increase in ionically bound peroxidase activity in roots preceded inhibition of root growth caused by NaCl, NH4Cl or proline. Mannitol inhibited root growth, but decreased rather than increased ionically bound peroxidase activity at the concentration iso-osmotic with NaCl. The inhibition of root growth and the increase in ionically bound peroxidase activity in roots by NaClis reversible and is associated with ionic rather than osmotic component. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Two phytoalexins were isolated as chromatographically homogeneous amorphous solids from UV-irradiated, dark-grown rice coleoptiles. From their mass and 1H NMR spectra, the compounds were characterized as the known diterpenes, momilactones A and B. The same compounds were also produced in blast-infected, WL 28325-treated rice leaves. They appear to be the first clearly identified cereal phytoalexins.  相似文献   

16.
Recent findings have suggested that H2O2 is an important signaling molecule for regulating plant responses to abiotic stress. H2O2 plays a critical role in NaCl stress. Heme oxygenase (HO) is known to play a protective role against oxidative stress. In this study, we examined the possible involvement of H2O2 in regulating NaCl-promoted HO activity in rice roots. Treatment with NaCl increased HO activity and H2O2 content in rice roots. As well, NaCl could induce OsHO1 mRNA expression. NaCl (150 mM) and NaNO3 (150 mM) were equally effective in inducing HO activity. However, mannitol at the concentration (276 mM) iso-osmotic with 150 mM NaCl had no effect on HO activity. NaCl-promoted HO activity and OsHO1 expression in rice roots was reduced by NADPH oxidase inhibitors i.e. dipehnyleneiodonium and imidazole. Moreover, exogenous application of H2O2 enhanced the activity of HO and the mRNA level of OsHO1. Our data suggest that H2O2 production plays a positive role in NaCl- induced HO activity by enhancing its mRNA level in rice roots.  相似文献   

17.
In rice, light is known to inhibit the growth of coleoptiles and seminal roots of seedlings through phytochrome. Here we investigated the light-induced growth inhibition of seminal roots and compared the results with those recently determined for coleoptiles. Although three rice phytochromes, phyA, phyB and phyC functioned in a similar manner in coleoptile and seminal root, the Bunsen-Roscoe law of reciprocity was not observed in the growth inhibition of seminal root. We also found coiling of the seminal root at the root tip which appeared to be associated with the photoinhibition of seminal root growth. This could be a new light-induced phenomenon in certain cultivars of rice.Key words: growth, hypocotyl, Oryza sativa, phytochrome, seminal rootPhytochrome-mediated growth inhibition was reported for both coleoptiles and seminal roots of rice seedlings in the same year by two research groups in Nagoya and Tohoku University in Japan, respectively.1,2 Forty years after the findings, a detailed photobiological study was carried out for the coleoptile growth inhibition.3 In this study, we examined photoinhibition of seminal root growth, and found similarities and differences between light-induced growth inhibition of the two organs in rice seedlings. Although coleoptile growth was inhibited by pulses of light, growth inhibition of seminal roots required light irradiation longer than 6 h. The Bunsen-Roscoe law of reciprocity was not observed in the growth inhibition of seminal root. Action spectra were determined for the growth inhibition of coleoptiles, and the mode of inhibition was found to depend on the age of the coleoptiles. At the early stage of development [40 h after inducing germination (AIG)], photoinhibition was predominantly due to the phyB-mediated low-fluence response (LFR), but at the late developmental stage (80 h AIG), it consisted of the phyA-mediated very low-fluence response (VLFR) as well as the phyB-mediated LFR.3,4 In the case of root growth, the sensitivity of photoinhibition also depended on age, and was most sensitive in the period of 48–96 h AIG when seedlings were irradiated for 24 h. Using rice phytochrome mutants,5 we found that far-red light for root growth inhibition was perceived exclusively by phyA, that red light was perceived by both phyA and phyB, and that phyC had little or no role in growth inhibition. Furthermore, the fluence rate required for phyB-mediated inhibition was more than 10,000-fold greater than that required for phyA-mediated inhibition. These characteristics of photoinhibition in seminal roots are similar to those found in coleoptiles at the late stage of development.3 In seminal roots, photoinhibition appeared to be mediated by photoreceptors in the root itself.Interestingly, coiling of the root tips always occurred when root growth was inhibited under the light condition (Fig. 1B). Under continuous light irradiation, rice seeds germinated ∼30 h AIG. Seminal roots formed a coil at the root tips during the 48–96 h period AIG, and stopped growing. When they were irradiated for only 24 h on the 3rd day AIG, coils started to form just after the end of irradiation. The roots continued to coil for ∼28 h and then began growing straight again (Fig. 1C). The coils were larger and looser than those formed under continuous light condition (Fig. 1, Open in a separate windowFigure 1Light irradiation induces coiling of root tips in rice seedlings (Oryza sativa cv. Nipponbare). A rice seedling was grown in the dark (A), or in continuous white light (55 µole m−2 s−1) (B) for 7 d at 28°C. In (C), it was irradiated by white light for 24 h during the 48–72 h period after inducing germination, and kept in the dark again until the 7th day. Arrows and arrowheads indicate the seminal and crown roots, respectively. Seedlings were grown in glass tubes of 3-cm diameter.

Table 1

The size of coil of root tips formed after white light irradiation
Light irradiationDiameter* (mm)Length* (mm)Number of turns*
Continuous irradiation for 7 d1.96 ± 0.412.70 ± 0.634.6 ± 0.8
24 h-long irradiation during the 48–72 h period after inducing germination2.60 ± 0.443.33 ± 0.192.3 ± 0.5
Open in a separate window* Mean and SD of 4-7 seedlings.We also found that light exposure had an opposite effect on the growth of the seminal and crown roots of rice seedlings. Light inhibited the growth of seminal roots, whereas it promoted the growth of crown roots. In fact, light was found to promote growth of Arabidopsis primary roots, in which phyA and phyB were found to be responsible for photoperception as well as photosynthetic activity.6 In rice seedlings, growth orientation of the crown roots is also affected by light exposure, whereas growth orientation of the seminal roots is controlled solely by the gravity vector. The crown roots grow in a horizontal direction in the dark, while they grow toward the gravity vector in the light.7 The contrasting responses to light in the seminal and crown roots are likely to help the transition of rice seedlings from the embryonic root system, in which the seminal roots are predominant, to the fibrous root system, which contains numerous crown roots.  相似文献   

18.
Root development is sensitive to environmental stimuli. We have recently reported that the light signal could promote the helical growth of seminal roots and drive the wavy root morphology in rice (Oryza sativa L.) young seedlings. The light-stimulated wavy roots were mostly performed in indica-type rice varieties (e.g., Taichung Native 1; TCN1) but not in japonica rice (e.g., Tainung 67; TNG67). Here, we demonstrated that the light-driven circumutation trajectory of TCN1 seminal roots could be changed if the seedling roots were grown in the medium containing high concentration of Phytagel. The data showed the root morphology would be modulated from wavy to curling when the Phytagel concentration was increased to 2%. However, the touch-stimulated curling root phenotype could not be performed in dark. In addition, the touch-induced curling roots were not appeared in the TNG67 rice cultivar. Although touch stimuli could not induce wavy/curling root phenotype in dark, it could modify the light-promoted helical growth to conduct curling roots in TCN1 rice seedlings. Thus, it was suggested that there is a crosstalk mechanism between touching-induced root curling and light-stimulated root waving.Key words: curling root, light stimuli, Oryza sativa, seminal root, touch stimuli, wavy rootRoot development and architecture could be changed to adapt the environmental conditions. Although root is usually grown in soil, it still exposes to light penetrated through soil particles. Some studies also indicated light can be conducted from shoots to roots through vascular bundle tissues.1,2 Recently, we have reported that the light-exposed seminal roots of indica-type rice, i.e., Taichung Native 1 (TCN1), presented the wavy morphology.3 The light-induced wavy root was not performed in japonica rice such as Tainung 67 (TNG67). Moreover, the circumutation of TCN1 seminal root tip were observed with time-lapse photography during root growth. According to the investigations among various rice varieties, it has been found that the root morphology was determined by helix period and circumnutation trajectory of root tip moving behavior.3 For example, the root tip movement of light-exposed TCN1 seedlings was a regular circumntation; therefore, the roots performed a regular wavy phenotype. In the other rice variety (i.e., Taichung Sen 17) with the curling root morphology, the circumnutation trajectory of seminal roots was significantly irregular compared with that was observed in TCN1. In the previous report, we showed that the auxin and oxylipins (i.e., ketol) played important roles to trigger the light-induced wavy roots.3The wavy root phenotype has also been observed in Arabidopsis when it was cultured on an agar-plate that was inclined at an angle of less than 90°.4 Based on the studies in Arabidopsis mutants, the performance of obstacle-touching induced wavy phenotype in seedlings roots was related to the functions of auxin efflux/influx carriers and some proteins involved in cell expansion.46 Moreover, ethylene also played a role to modulate the wavy root morphology.7In our previous experiments for studying the light-induced wavy roots, rice seedlings were cultured in water. In order to reveal the effect of interaction between light signal pathway and touch stimuli on rice seminal root growth, the sterilized rice seeds of TCN1 and TNG67 cultivars were germinated at 30°C in dark for 2 d and moved to continuous white light conditions (90 µmol m−2 s−1) to grow in vertically oriented square dishes containing 1.5% and 2% (w/v) Phytagel (Sigma, St. Louis, MO), respectively. The Phytagel percentage of the medium that we used here were higher than that was used for plant tissue culture in usual. After 3 d culture, the seminal roots of seedlings on 1.5% Phytagel performed wavy phenotype that was similar to the wavy roots observed in water-cultured seedlings under light conditions. Furthermore, the seminal roots in 2% Phytagel was grown to be a curling type (Fig. 1). On the other hand, no wavy or curling root morphology was presented in dark conditions either in 1.5% or 2% Phytagel-containing medium (Fig. 1). These results showed that root-Phytagel interaction could not directly induce the significant wavy or curling root morphology under dark growth conditions, but it could modify the light-stimulated helical growth and conduct the curling root morphology.Open in a separate windowFigure 1Effect of the interaction between light signals and touch stimuli on seminal root growth in rice seedlings. The TCN1 rice seeds were germinated in dark for 2 d and then germinated seeds were transferred to 1.5% and 2% Phytagel-containing plates for continuously growing. The root morphology was investigated after 3 d of Phytagelculture under light and dark conditions.Photomorphology of the seminal roots was diverse among rice varieties. Our previous data showed light-induced wavy roots could not be conducted in TNG67 rice cultivar.3 Here, we also observed the root growth of TNG67 rice seedlings on Phytagel-containing plates, and the results showed the straight root morphology in both light and dark conditions (data not shown). These results indicated that the phenomena of touch-stimulated curling roots were also rice variety-dependent.Based on above mentioned results, it was suggested that mechanisms of root-gel interaction for conducting curling phenotype was highly correlated with the transduction pathway of light signal to induce root waving. This hypothesis was supported by the observation on physiological mechanisms of light-induced wavy roots in rice plants and the obstacle-touching stimulated wavy roots in Arabidopsis. Our previous observation in rice plants suggested that auxin polar transport was essential for light-induced root waving and fatty acid oxygenation was involved to the mechanism of root waving in light.3 In Arabidopsis, auxin polar transport was also indicated to play a role in obstacle-touching stimulated root waving.8,9 In addition, wavy roots of Arabidopsis could be induced by several products of fatty acid oxygenation, i.e., ketols, ketones and hydroxides.10In conclusion, both light signal and touch stimuli were the important environmental cues to guide root growth and determine root morphology. Touch stimuli were able to modify the trajectory of light-induced root waving. Phenomena of both light-induced wavy roots and touch-stimulated curling roots were rice variety-dependent. Furthermore, it was suggested that touch-induced signaling may be associated with the light-induced signal pathway to conduct curling phenotype in seminal roots of rice seedlings.  相似文献   

19.
A cell-free system which catalyzes the biosynthesis of terpene hydrocarbons when supplemented with mevalonate, Mn2+, and ATP was prepared from the scutellum-embryonic axis region of maize seedlings. The capacity of this system for the production of terpene hydrocarbons was enhanced 50- to 100-fold when the seedlings were exposed for 48 hours to the fungus Rhizopus stolonifer prior to tissue homogenization. The fungi Aspergillus niger, Fusarium moniliforme, and Verticillium albo-atrum also elicited this biosynthetic enhancement. The terpene hydrocarbon products were separable into six fractions by argentation thin layer chromatography. Radioactivity was contributed to five of these fractions when either geranylgeranyl pyrophosphate or copalyl pyrophosphate was supplied as substrate, suggesting that polycyclic diterpenoid hydrocarbons were the main products. Large scale biosynthetic reactions led to the acquisition of about 1 milligram of terpene hydrocarbon products plus some more polar terpenoid products. Analysis of the hydrocarbon products by gas chromatography and mass spectrometry led to the separation of six distinct diterpene hydrocarbons plus a fraction with a molecular weight of about 550. Three of the diterpene hydrocarbons were identified as kaur-16-ene, kaur-15-ene (isokaurene), and pimara-8(14),15-diene. None of the terpene hydrocarbon fractions tested displayed antifungal activity in the Cladosporium cucumerinum thin layer plate assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号