首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear factor-kappaB (NF-kappaB) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits NF-kappaB is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing IFNbeta(TRIF)-dependent signaling pathways leading to activation of NF-kappaB and IFN-regulatory factor 3 (IRF3). Acrolein inhibited NF-kappaB and IRF3 activation by LPS, but it did not inhibit NF-kappaB or IRF3 activation by MyD88, inhibitor kappaB kinase (IKK)beta, TRIF, or TNF-receptor-associated factor family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of NF-kappaB and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.  相似文献   

2.
Toll-like receptors (TLRs) play important inductive roles in innate immune responses for host defense against invading microbial pathogens. Activation of TLR4 by lipopolysaccharide (LPS) induces dimerization of TLR4 and, subsequently, activation of downstream signaling pathways including nuclear factor-kappa B and interferon regulatory factor 3. TLR4 dimerization may be an early regulatory event in activating signaling pathways induced by LPS. Here, biochemical evidence is reported that isoliquiritigenin, one of the major ingredients derived from licorice root, inhibits LPS-induced TLR4 dimerization resulting in inhibition of nuclear factor-kappa B and interferon regulatory factor 3 activation, and cyclooxygenase-2 and inducible nitric oxide synthase expression. These results suggest that isoliquiritigenin modulates TLR-mediated signaling pathways at the receptor level. Furthermore, these results suggest that TLRs themselves may be important targets for the prevention of chronic inflammatory diseases.  相似文献   

3.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

4.
Toll-like receptor (TLR) pathways signal through microbial components stimulation to induce innate immune responses. Herein, we demonstrate that BCL10, a critical molecule that signals between the T cell receptor and IkappaB kinase complexes, is involved in the innate immune system and is required for appropriate TLR4 pathway and nuclear factor-kappaB (NF-kappaB) activation. In response to lipopolysaccharide (LPS) stimulation, BCL10 was recruited to TLR4 signaling complexes and associated with Pellino2, an essential component down-stream of BCL10 in the TLR4 pathway. In a BCL10-deficient macrophage cell line, LPS-induced NF-kappaB activation was consistently defective, whereas activator protein-1 and Elk-1 signaling was intact. In addition, we found that BCL10 was targeted by SOCS3 for negative regulation in LPS signaling. The recruitment of BCL10 to TLR4 signaling complexes was attenuated by induced expression of SOCS3 in a feedback loop. Furthermore, ectopic SOCS3 expression blocked the interaction between BCL10 and Pellino2 together with BCL10-generated NF-kappaB activation and inducible nitric-oxide synthase expression. Together, these data define an important role of BCL10 in the innate immune system.  相似文献   

5.
Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B (NF-κB). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of NF-κB activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.  相似文献   

6.
TLRs can activate two distinct branches of downstream signaling pathways. MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF) pathways lead to the expression of proinflammatory cytokines and type I IFN genes, respectively. Numerous reports have demonstrated that resveratrol, a phytoalexin with anti-inflammatory effects, inhibits NF-kappaB activation and other downstream signaling pathways leading to the suppression of target gene expression. However, the direct targets of resveratrol have not been identified. In this study, we attempted to identify the molecular target for resveratrol in TLR-mediated signaling pathways. Resveratrol suppressed NF-kappaB activation and cyclooxygenase-2 expression in RAW264.7 cells following TLR3 and TLR4 stimulation, but not TLR2 or TLR9. Further, resveratrol inhibited NF-kappaB activation induced by TRIF, but not by MyD88. The activation of IFN regulatory factor 3 and the expression of IFN-beta induced by LPS, poly(I:C), or TRIF were also suppressed by resveratrol. The suppressive effect of resveratrol on LPS-induced NF-kappaB activation was abolished in TRIF-deficient mouse embryonic fibroblasts, whereas LPS-induced degradation of IkappaBalpha and expression of cyclooxygenase-2 and inducible NO synthase were still inhibited in MyD88-deficient macrophages. Furthermore, resveratrol inhibited the kinase activity of TANK-binding kinase 1 and the NF-kappaB activation induced by RIP1 in RAW264.7 cells. Together, these results demonstrate that resveratrol specifically inhibits TRIF signaling in the TLR3 and TLR4 pathway by targeting TANK-binding kinase 1 and RIP1 in TRIF complex. The results raise the possibility that certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression and can alter susceptibility to microbial infection and chronic inflammatory diseases.  相似文献   

7.
8.
Toll-like receptor (TLR) and interferon-gamma (IFN-gamma) signaling pathways are important for both innate and adaptive immune responses. However, the cross-talk between these two signaling pathways is incompletely understood. Here we show that IFN-gamma and LPS synergistically induce the expression of proinflammatory factors, including interleukin-1 (IL-1), IL-6, IL-12, NO, and tumor necrosis factor-alpha (TNF-alpha). Comparable synergism was observed between IFN-gamma and peptidoglycan (PGN; a TLR2 ligand) and poly(I:C) (a TLR3 ligand) in the induction of IL-12 promoter activity. IFN-gamma enhanced lipopolysaccharide (LPS)-induced ERK and JNK phosphorylation but had no effect on LPS-induced NF-kappaB activation. Interestingly, we found that IRF-8-/- macrophages were impaired in the activation of LPS-induced ERK and JNK and the production of proinflammatory cytokines induced by LPS or IFN-gamma plus LPS. Retroviral transduction of IRF-8 into IRF-8-/- macrophages rescued ERK and JNK activation. Furthermore, co-immunoprecipitation experiments show that IRF-8 physically interacts with TRAF6 at a binding site between amino acid residues 356 and 305 of IRF-8. Transfection of IRF-8 enhanced TRAF6 ubiquitination, which is consistent with a physical interaction of IRF-8 with TRAF6. Taken together, the results suggest that the interaction of IRF-8 with TRAF6 modulates TLR signaling and may contribute to the cross-talk between IFN-gamma and TLR signal pathways.  相似文献   

9.
LPS, the primary constituent of the outer membrane of Gram-negative bacteria, is recognized by TLR4. Binding of TLR4 to LPS triggers various cell signaling pathways including NF-kappaB activation and reactive oxygen species (ROS) production. In this study, we present the data that LPS-induced ROS generation and NF-kappaB activation are mediated by a direct interaction of TLR4 with (NAD(P)H oxidase 4 (Nox) 4), a protein related to gp91phox (Nox2) of phagocytic cells, in HEK293T cells. Yeast two hybrid and GST pull-down assays indicated that the COOH-terminal region of Nox4 interacted with the cytoplasmic tail of TLR4. Knockdown of Nox4 by transfection of small interference RNA specific to the Nox4 isozyme in HEK293T cells expressing TLR4 along with MD2 and CD14 resulted in inhibition of LPS-induced ROS generation and NF-kappaB activation. Taken together, these results indicate that direct interaction of TLR4 with Nox4 is involved in LPS-mediated ROS generation and NF-kappaB activation.  相似文献   

10.
11.
12.
In colonic epithelium, one of the pathways of lipopolysaccharide (LPS) activation of NF-kappaB and IL-8 is via Toll-like receptor (TLR)4, MyD88, IRAK1/4, and B-cell CLL/lymphoma 10 (Bcl10). However, this innate immune pathway accounts for only approximately 50% of the NF-kappaB activation, so additional mechanisms to explain the LPS-induced effects are required. In this report, we identify a second pathway of LPS-induced stimulation, mediated by reactive oxygen species (ROS), in human colonic epithelial tissue cells in tissue culture and in ex vivo mouse colonic tissue. Measurements of IL-8, KC, Bcl10, phospho-IkappaBalpha, nuclear NF-kappaB, and phosphorylated Hsp27 were performed by ELISA. The TLR4-Bcl10 pathway was inhibited by Bcl10 siRNA and in studies with colonic tissue from the TLR4-deficient mouse. The ROS pathway was inhibited by Tempol, a free radical scavenger, or by okadaic acid, an inhibitor of Hsp27 dephosphorylation by protein phosphatase 2A (PP2A). The ROS pathway was unaffected in the TLR4-deficient tissue or by silencing of Bcl10. The combination of exposure to the free radical scavenger Tempol and of TLR4 or Bcl10 suppression was required to completely inhibit the LPS-induced activation. The ROS pathway was associated with dephosphorylation of Hsp27. LPS appears to activate both the regulatory component of the IkappaBalpha-kinase (IKK) signalosome through Bcl10 interaction with Nemo (IKKgamma) and the catalytic component through Hsp27 interaction with IKKbeta. Since LPS exposure is associated with septic shock and the systemic inflammatory response syndrome, distinguishing between these two pathways of LPS activation may facilitate new approaches to prevention and treatment.  相似文献   

13.
Signaling to NF-kappaB by Toll-like receptors   总被引:7,自引:0,他引:7  
  相似文献   

14.
Recognition of lipopolysaccharide (LPS) by Toll-like receptor (TLR)4 initiates an intracellular signaling pathway leading to the activation of nuclear factor-kappaB (NF-kappaB). Although LPS-induced activation of NF-kappaB is critical to the induction of an efficient immune response, excessive or prolonged signaling from TLR4 can be harmful to the host. Therefore, the NF-kappaB signal transduction pathway demands tight regulation. In the present study, we describe the human protein Listeria INDuced (LIND) as a novel A20-binding inhibitor of NF-kappaB activation (ABIN) that is related to ABIN-1 and -2 and, therefore, is further referred to as ABIN-3. Similar to the other ABINs, ABIN-3 binds to A20 and inhibits NF-kappaB activation induced by tumor necrosis factor, interleukin-1, and 12-O-tetradecanoylphorbol-13-acetate. However, unlike the other ABINs, constitutive expression of ABIN-3 could not be detected in different human cells. Treatment of human monocytic cells with LPS strongly induced ABIN-3 mRNA and protein expression, suggesting a role for ABIN-3 in the LPS/TLR4 pathway. Indeed, ABIN-3 overexpression was found to inhibit NF-kappaB-dependent gene expression in response to LPS/TLR4 at a level downstream of TRAF6 and upstream of IKKbeta. NF-kappaB inhibition was mediated by the ABIN-homology domain 2 and was independent of A20 binding. Moreover, in vivo adenoviral gene transfer of ABIN-3 in mice reduced LPS-induced NF-kappaB activity in the liver, thereby partially protecting mice against LPS/D-(+)-galactosamine-induced mortality. Taken together, these results implicate ABIN-3 as a novel negative feedback regulator of LPS-induced NF-kappaB activation.  相似文献   

15.
16.
17.
CCR4 is recognized as a key receptor in Th2-associated immune processes, although very little is known about its role in innate immunity. Previous studies reported increased resistance to LPS-induced lethality in CCR4(-/-) mice compared with wild-type mice. This study demonstrates that CCR4(-/-) mice are similarly resistant to challenge with other TLR agonists, as well as bacterial peritonitis. Resistance was associated with enhanced early leukocyte recruitment, increased TLR expression, a skewed type 2 cytokine/chemokine profile, and improved bacterial clearance. Macrophages from CCR4(-/-) mice exhibited many features consistent with alternative activation, including elevated secretion of type 2 cytokines/chemokines and the found in inflammatory zone 1 (FIZZ1) protein. MyD88-dependent NF-kappaB signaling was significantly down-regulated in CCR4(-/-) macrophages, whereas p38 MAPK and JNK activation were conversely increased. These data stress the importance of CCR4 in macrophage differentiation and innate immune responses to pathogens, as well as the involvement of chemokine receptor expression in TLR signaling regulation.  相似文献   

18.
MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.  相似文献   

19.
20.
Chorioamnionitis is a major cause of preterm delivery. Infants exposed to inflammation in utero and then born preterm may have improved lung function in the immediate postnatal period. We developed a mouse model of chorioamnionitis to study the inflammatory signaling mechanisms that might influence fetal lung maturation. With this in vivo model, we found that Escherichia coli lipopolysaccharide (LPS) increased the number of alveolar type II cells in the fetal mouse lung. LPS also increased type II cell number in cultured fetal lung explants, suggesting that LPS could directly signal the fetal lung in the absence of maternal influences. Using immunostaining, we localized cells within the fetal mouse lung expressing the LPS receptor molecule Toll-like receptor 4 (TLR4). Similar to the signaling pathways in inflammatory cells, LPS activated NF-kappaB in fetal lung explants. Activation of the TLR4/NF-kappaB pathway appeared to be required, as LPS did not increase the number of type II cells in C.C3H-Tlr4(Lps-d) mice, a congenic strain containing a loss of function mutation in tlr4. In addition, the sesquiterpene lactone parthenolide inhibited NF-kappaB activation following LPS exposure and blocked the LPS-induced increase in type II cells. On the basis of these data from our mouse model of chorioamnionitis, it appears that LPS specifically activated the TLR4/NF-kappaB pathway, leading to increased type II cell maturation. These data implicate an important signaling mechanism in chorioamnionitis and suggest the TLR4/NF-kappaB pathway can influence lung development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号