首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen and methane were simultaneously produced in a two‐phase reactor, operated to separate the reactions of hydrogen and methanogen production. Each reactor was inoculated with a seed enriched with different microbial consortia. The first phase was operated with a hydraulic retention time of 7 days and at an organic loading rate of 7.7 g VS L?1 d?1 that produced a stable pH of 5.5. This suppressed the growth of methanogens and as a result, the off gas contained up to 27% hydrogen. The second phase was operated with a hydraulic retention time of 12 days and at an organic loading rate of 3.6 g VS L?1 d?1. This permitted the growth of hydrogenotrophs and methanogens to produce methane at a concentration of 60%. Examination of the microbial population of the two reactors both microscopically and using PCR, showed an effective separation of hydrogen‐ and methane‐producing microbial communities. The study revealed that the suppression of hydrogentrophs and methanogens can be achieved by adopting rapid method that leads the growth of hydrogen‐ and methane‐producing granules in phase‐separated anaerobic environment.  相似文献   

2.
A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor.A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestion was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH(4)g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as "Rumen Derived Anaerobic Digestion" (RUDAD-) process.  相似文献   

3.
The present study evaluates the performance of air-cathode microbial fuel cells (MFCs) under alternating open circuit/closed circuit (OC/CC) modes and its effect on independent-electrode and full-cell potentials, power output (at different external resistances) and the polarization behaviour of the electrodes. Three different types of feeds were evaluated using this approach: (1) phosphorus buffer solution (PBS) with acetate as carbon source, (2) glucose-rich synthetic wastewater, and (3) sewage from wastewater treatment plant enriched with fermented molasses. When MFCs were suddenly switched to CC from OC and then again back to OC from CC, the behaviour of the anodes vs reference electrode (Ag/AgCl, 3 M KCl) was monitored. When electric circuit of the MFCs was switched from open to closed circuit, for all cases: (a) the anode potential-shift (vs Ag/AgCl) reallocated in the positive direction in about 200–400 mV, (b) the air-cathode potential-shift (vs Ag/AgCl) reallocated in the negative direction in about 10–25 mV, and (c) the cell-potential difference started at around 0 mV and progressively increased as the MFC reached stability. This behaviour was consistently reproduced during different OC/CC cycles. The systems studied delivered good performance with both controlled media and industrial wastewater. Additionally, this study provides insightful characterization of the independent-electrode behaviours.  相似文献   

4.
Changes in product formation during carbohydrate fermentation by anaerobic microflora in a continuous flow stirred tank reactor were investigated with respect to the dilution rate in the reactor. In the fermentation by methanogenic microflora, stable methane fermentation, producing methane and carbon dioxide, was observed at relatively low dilution rates (less than 0.33 d(-1) on glucose and 0.20 d(-1) on cellulose). Decomposition of cellulose in the medium was a rate-limiting step in the reaction, because glucose was easily consumed at all applied dilution rates (0.07-4.81 d(-1)). Intermediate metabolites of methane fermentation, such as lactate, ethanol, acetate, butyrate, formate, hydrogen, and carbon dioxide, were accumulated as dilution rate increased. Maximum yield of hydrogen was obtained at 4.81 d(-1) of dilution rate (0.1 mol/mol glucose on glucose or 0.7 mol/mol hexose on cellulose). Lactate was the major product on glucose (1.2 mol/mol glucose), whereas ethanol was predominant on cellulose (0.7 mol/mol hexose). An analysis by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial 16S rDNA of the microflora indicated that changes in the microbial community took place at various dilution rates, and these changes appeared to correspond to the changes in product distributions. Sequence analyses of the DGGE fragments revealed the probable major population of the microflora. A band closely related to the microorganisms of thermophilic anaerobic bacteria was detected with strong intensity on both glucose and cellulose. Differences in the production yield of hydrogen could have been caused by different populations of microorganisms in each microflora. In the case of cellulose, increasing the dilution rate brought about an accumulation of microorganisms related to Clostridia species that have cellulolytic activity, this being in accordance with the notion of cellulose decomposition being the rate-limiting reaction.  相似文献   

5.
It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells.  相似文献   

6.
The effect of substrate changes on the performance and microbial community of two-chamber microbial fuel cells (MFCs) was investigated in this study. The MFCs enriched with a single substrate (e.g., acetate, glucose, or butyrate) had different acclimatization capability to substrate changes. The MFC enriched with glucose showed rapid and higher power generation, when glucose was switched with acetate or butyrate. However, the MFC enriched with acetate needed a longer adaptation time for utilizing glucose. Microbial community was also changed when the substrate was changed. Clostridium and Bacilli of phylum Firmicutes were detected in acetate-enriched MFCs after switching to glucose. By contrast, Firmicutes completely disappeared and Geobacter-like species were specifically enriched in glucose-enriched MFCs after feeding acetate to the reactor. This study further suggests that the type of substrate fed to MFC is a very important parameter for reactor performance and microbial community, and significantly affects power generation in MFCs.  相似文献   

7.
This study investigates the hydrolysis of cellulose by a mixed culture enriched from landfill waste in a continuous reactor operated under prolonged residence times to accommodate methanogenic conditions. Chemostat studies of hydrolysis under balance methanogenic conditions are rarely reported, despite the importance of hydrolysis under these conditions in waste management and renewable energy industries. Continuous digestion was studied in a 1.25l digester, fed with a 1% (w/v) slurry of 50mum cellulose in sterilized leachate drawn from a 220l digester operated on a feedstock of mixed municipal solid waste. Unsterilized leachate was used as the inoculum. Stable and rapid hydrolytic conditions were established at residence time of 2.5, 3.5 and 5d with a 1st order hydrolysis rate 0.45+/-0.07d(-1) and high methane yields ranging from 57% to 62% of solubilised cellulose on a COD basis. Biomass yields were between 32% and 35% of solubilised cellulose on a COD basis, over three times that observed with fermentative cultures. This is attributed to the diversity of the microbial population which fully converted solubilised COD to methane, as evident by VFA yields of less than 8% on a COD basis.  相似文献   

8.
We report the electrochemical characterization and microbial community analysis of closed circuit microbial fuel cells (CC-MFCs) and open circuit (OC) cells continuously fed with propionate as substrate. Differences in power output between MFCs correlated with their polarization behavior, which is related to the maturation of the anodophilic communities. The microbial communities residing in the biofilm growing on the electrode, biofouled cation-exchange membrane and anodic chamber liquor of OC-and CC-MFCs were characterized by restriction fragment length polymorphism screening of 16S rRNA gene clone libraries. The results show that the CC-MFC anode was enriched in several microorganisms related to known electrochemically active and dissimilatory Fe(III) reducing bacteria, mostly from the Geobacter spp., to the detriment of Bacteroidetes abundant in the OC-MFC anode. The results also evidenced the lack of a specific pelagic community in the liquor sample. The biofilm growing on the cation-exchange membrane of the CC-MFC was found to be composed of a low-diversity community dominated by two microaerophilic species of the Achromobacter and Azovibrio genus.  相似文献   

9.
The initial decomposition rates of cellulose and hemicellulose were measured using toluene to specifically inhibit the microbial uptake of hydrolysis products during the degradation of newspaper under sulfate reducing and methane producing conditions. The amount of glucose and xylose accumulation in the first 2 weeks of incubation period was higher in the sulfate reducing condition compared to the methane producing condition. It was estimated that 28 and 6% of initially loaded cellulose in the sulfate reducing condition and the methane producing condition was hydrolyzed, respectively. Accordingly, the newspaper-cellulose hydrolysis rate constant was estimated to be 6.7 times higher in sulfate reducing condition than in methane producing condition. Based on the glucose accumulation patterns, when sulfate reducing bacteria (SRB) were inhibited by anthraquinone and molybdate (Na2MoO4), it may be suggested that SRB might have contributed to the hydrolysis of cellulose, while their effect on the hydrolysis of hemicellulose could not be elucidated.  相似文献   

10.
Microbial methanogenesis in subseafloor sediments is a key process in the carbon cycle on the Earth. However, the cultivation-dependent evidences have been poorly demonstrated. Here we report the cultivation of a methanogenic microbial consortium from subseafloor sediments using a continuous-flow-type bioreactor with polyurethane sponges as microbial habitats, called down-flow hanging sponge (DHS) reactor. We anaerobically incubated methane-rich core sediments collected from off Shimokita Peninsula, Japan, for 826 days in the reactor at 10 °C. Synthetic seawater supplemented with glucose, yeast extract, acetate and propionate as potential energy sources was provided into the reactor. After 289 days of operation, microbiological methane production became evident. Fluorescence in situ hybridization analysis revealed the presence of metabolically active microbial cells with various morphologies in the reactor. DNA- and RNA-based phylogenetic analyses targeting 16S rRNA indicated the successful growth of phylogenetically diverse microbial components during cultivation in the reactor. Most of the phylotypes in the reactor, once it made methane, were more closely related to culture sequences than to the subsurface environmental sequence. Potentially methanogenic phylotypes related to the genera Methanobacterium, Methanococcoides and Methanosarcina were predominantly detected concomitantly with methane production, while uncultured archaeal phylotypes were also detected. Using the methanogenic community enrichment as subsequent inocula, traditional batch-type cultivations led to the successful isolation of several anaerobic microbes including those methanogens. Our results substantiate that the DHS bioreactor is a useful system for the enrichment of numerous fastidious microbes from subseafloor sediments and will enable the physiological and ecological characterization of pure cultures of previously uncultivated subseafloor microbial life.  相似文献   

11.
The project is devoted to the screening of active anaerobic microbial communities which produce biogas via the decomposition of cellulose in thermophilic conditions (+55°C). Twenty-four samples were isolated from different natural and anthropogenic sources that contain desired microbial organisms. Growth medium was chosen to optimize the conditions for proliferation and selection of cellulolytic and methanogenic microorganisms. During the study of biogas formation dynamics, the most productive communities that remain active during five passages were selected. The biogas composition (methane, carbon dioxide, hydrogen) was investigated by gas chromatography. On average, the methane content in the gas mixture reached 60%. Microscopic studies revealed the presence of various morphotypes of microbial cells; their ratio varied during the stabilization of communities. The significance of the research on the transformation of cellulose into biogas is discussed.  相似文献   

12.
The anaerobic digestion of cellulose was assessed in batch and semi-continuous studies using a carbon felt fixed-bed reactor. In the batch operation, the volatile solids reduction (%) and the cumulative methane production during the mesophilic and thermophilic digestion were 52.2% and 15.9%, 96.7 and 49.2 ml/g-total solid fed, respectively. After 99 days of semi-continuous mesophilic digestion, the degradation of cellulose reached its highest level of 67.6% at the hydraulic retention time of 9 days. The methane production and methane concentration of biogas from the bioreactor were maintained at a steady state. The fixed-bed reactor with carbon felt would be suitable for the efficient anaerobic digestion of cellulose. The biomass distribution in the reactor was, in the liquid phase 0.73 g/l-reactor, in the felt 1.59 g/l-reactor, and on the felt surface 9.86 g/l-reactor, which indicated that most of the microbes were immobilized on the carbon felt fixed-bed in the reactor.  相似文献   

13.
This study focused on the capacity of finished compost, often used as packing material in biofiltration units, to support microbial biodegradation of trichloroethylene (TCE). Finished compost was enriched with methane or propane (10% head space) to stimulate cometabolic biodegradation of gaseous TCE. Successful hydrocarbon enrichment, as indicated by rapid depletion of hydrocarbon gas and measurable growth of hydrocarbon-utilizing micro-organisms, occurred within a week. Within batch reactor flasks, approximately 75% of head space TCE (1–40 ppmv) was rapidly sorbed onto compost material. Up to 99% of the remaining head space TCE was removed via biodegradation in compost enriched with either hydrocarbon. Hydrocarbon enrichment with methane or propane corresponded to 10-fold increases in methanotrophic or propanotrophic populations, respectively. Based on growth assessment under different nutritional regimes, there appeared to be complex metabolic interactions within the microbial community in enriched compost. Five separate bacterial cultures were derived from the hydrocarbon-enriched compost and assayed for the ability to degrade TCE.  相似文献   

14.
Biogas production from anaerobic biodegradation of livestock waste is a potential source of renewable energy. In addition to methane, biodegradation of this high-strength waste also produces sulfide that must be removed in order to prevent costly corrosive impacts on infrastructure. In this work, an anaerobic, phototrophic microbial community enriched from the native population in a swine waste lagoon was evaluated for its potential to remove sulfide from swine waste biogas. Batch experiments with the consortium attained removal efficiencies greater than 97% for sulfide concentrations above 1200 ppm. 16S rRNA gene sequencing revealed that the dominant population was most closely related to the isolate Azospirillum strain C5 (similarity index of 99%). Photomicrograph of the enriched consortium revealed the presence of cells with intracellular globules resembling sulfur storage. The enrichment of Azospirillum-like and the concomitant sulfide consumption suggest that this microorganism played an important role in sulfide removal in the bioreactor.  相似文献   

15.
Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (DHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2h and volumetric air supply rate of 12.95m(3)-airm(-3)day(-1), greater than 90% oxidation of dissolved methane, ammonium, sulfide, and organic matter was achieved. With reduction in the air supply rate, ammonium oxidation first ceased, after which methane oxidation deteriorated. Sulfide oxidation was disrupted in the final step, indicating that COD and sulfide oxidation occurred prior to methane oxidation. A microbial community analysis revealed that peculiar methanotrophic communities dominating the Methylocaldum species were formed in the DHS reactor operation.  相似文献   

16.
Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L−1·day−1 was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89–91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia.  相似文献   

17.
The DEAE-cellulose linked cells of Methylosinus trichosporium displaying high specific methane mono-oxygenase activity (66 mumol methane oxidized/h mg cells) were used for methanol biosynthesis from biogas derived methane in a batch and a continuous cell reactor. The optimum cell-to-carrier ratio was determined to be 0.5 g cells/g dry weight cellulose. Batch experiments indicated that 100 mM phosphate ion concentration was necessary to inhibit further oxidation of methanol; excess oxygen supply favored methanol accumulation with an increase in methane conversion efficiency to 27%. A pulse of 40 mM sodium formate at the end of 6 h resulted in restoration of methanol accumulation by regenerating NADH(2) required for the sustained activity of methane mono-oxygenase. Maximum methanol level of 50 mumol/mg cells was obtained in the batch reactor. In a standard 50-mL ultrafiltration continuous reactor, the covalently linked cells produced methanol at a continuous rate of 100 mumol/h for the first 10 h, after which the methanol accumulation rate fell low due to the depletion of NADH(2). The methanol accumulation could be stimulated by supplying sodium formate (40 mM) in either 20 or 100 mM phosphate buffer. Maximum methanol accumulation rate of 267 mumol/h was obtained when 20 mM formate was supplied in the feed stream containing 100 mM phosphate ions, and this level of biosynthesis was maintained for over 72 h. The stoichiometric balance made at various points of formate addition indicated that the molar amount of methanol generated at steady state is dependent on the equimolar addition of sodium formate to the feed. The half-life t(1/2) and thermal denaturation rate constant K(d) were computed to be 108 h and 6.42 x 10(-3) h(-1), respectively.  相似文献   

18.
Water toxicity monitoring based on the continuous cultivation ofPhotobacterium phosphoreum is presented. Normally, after 10 days of operation, a dark variant, which emits no light, appears and dominates the population, resulting in a rapid decrase in bioluminescence. Therefore, to overcome this problem, a fluidized-bed reactor is used in which alginate-immobilized cells are grown and leaking cells are continuously released into the effluent. Experimental results revealed that the dominance of dark variants was suppressed inside the immobilized results revealed that the dominance of dark variants was suppressed inside the immobilized beads, thereby mitigating the rapid loss of bioluminescence. Plus, a high dilution rate (1.2 h−1) prevented the occurrence of other microbial contamination in the reactor. The concentration and bioluminescence of the released cells were sufficient to measure the water toxicity for more than 4 weeks.  相似文献   

19.
Saanich Inlet (British Columbia, Canada) is a seasonally anoxic fjord characterized by high rates of both methane production and consumption. In this study, the diversity of microbial populations residing in intermediate waters, characterized by having a high methane content, was assessed using CH(4)-microcosm experiments coupled with PCR surveys of phylogenetic (16S rRNA gene) and functional gene markers (pmoA and fhcD genes). The experiments revealed that bacteria represented by sequences affiliated with Methylomicrobium within the Methylococcales, Methylophaga and Cycloclasticus within the Thiotrichales, and uncultured Planctomycetes were enriched in response to CH(4) addition.  相似文献   

20.
Rates of carbon dioxide assimilation and methane oxidation were determined in various zones of the Rainbow Hydrothermal Field (36 degrees N) of the Mid-Atlantic Ridge. In the plume above the hydrothermal field, anomalously high methane content was recorded; the microbial population density (up to 10(5) cells/ml) was an order of magnitude higher than the background values; and the CO2 assimilation rate varied from 0.01 to 1.1 micrograms C/(1 day). Based on the data on CO2 assimilation, the production of organic carbon due to bacterial chemosynthesis in the plume was calculated to be 930 kg/day or 340 tons/year (about 29% of the organic carbon production in the photic zone). In the black smoke above active smokers, the microbial population density was as high as 10(6) cells/ml; the rate of CO2 assimilation made up 5-10 micrograms C/(1 day); the methane oxidation rate varied from 0.15 to 12.7 mu/(1 day); and the methane concentration ranged from 1.05 to 70.6 mu/l. In bottom sediments enriched with sulfides, the rate of CO2 assimilation was at least an order of magnitude higher than in oxidized metal-bearing sediments. At the base of an active construction site, whitish sediment was found, which was characterized by a methane high content (92 mu/dm3) and a high rate of oxidation (1.7 mu/(dm3 day)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号