首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pollen of Ginkgo biloba is one of the allergens that cause pollen allergy symptoms. The plant complex type N-glycans bearing beta1-2 xylose and/or alpha1-3 fucose residue(s) linked to glycoallergens have been considered to be critical epitopes in various immune reactions. In this report, the structures of N-glycans of total glycoproteins prepared from Ginkgo biloba pollens were analyzed to confirm whether such plant complex type N-glycans occur in the pollen glycoproteins. The glycoproteins were extracted by SDS-Tris buffer. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine and the resulting pyridylaminated (PA-)N-glycans were purified by a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, IS-MS, and MS/MS. The plant complex type structures (GlcNAc2Man3Xyl1Fuc1GlcNAc2 (31%), GlcNAc2Man3Xyl1GlcNAc2 (5%), Man3Xyl1Fuc1GlcNAc2 (13%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (8%), and GlcNAc1Man3Xyl1GlcNAc2 (17%)) have been found among the N-glycans of the glycoproteins of Ginkgo biloba pollen, which might be candidates for the epitopes involved in Ginkgo pollen allergy. The remaining 26% of the total pollen N-glycans have the typical high-mannose type structures: Man8GlcNAc2 (11%) and Man6GlcNAc2 (15%).  相似文献   

2.
The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).  相似文献   

3.
In our previous study (Y. Kimura et al., Biosci. Biotechnol. Biochem., 69, 137-144 (2005)), we found that plant complex type N-glycans harboring Lewis a epitope are linked to the mountain cedar pollen allergen Jun a 1. Jun a 1 is a glycoprotein highly homologous with Japanese cedar pollen glycoallergen, Cry j 1. Although it has been found that some plant complex type N-glycans are linked to Cry j 1, the occurrence of Lewis a epitope in the N-glycan moiety has not been proved yet. Hence, we reinvestigated the glycoform of the pollen allergen to find whether the Lewis a epitope(s) occur in the N-glycan moiety of Cry j 1. From the cedar pollen glycoallergen, the N-glycans were liberated by hydrazinolysis and the resulting sugar chains were N-acetylated and then coupled with 2-aminopyridine. Three pyridylaminated sugar chains were purified by reversed-phase HPLC and size-fractionation HPLC. The structures were analyzed by a combination of exo- and endo-glycosidase digestions, sugar chain mapping, and electrospray ionization mass spectrometry (ESI-MS). Structural analysis clearly indicated that Lewis a epitope (Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-), instead of the Galbeta1-4(Fucalpha1-6)GlcNAc, occurs in the N-glycans of Cry j 1.  相似文献   

4.
Glycan structures of glycoproteins secreted in the spent medium of tobacco BY2 suspension-cultured cells were analyzed. The N-glycans were liberated by hydrazinolysis and the resulting oligosaccharides were labeled with 2-aminopyridine. The pyridylaminated (PA) glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by a combination of the two-dimensional PA sugar chain mapping, MS analysis, and exoglycosidase digestion. The ratio (40:60) of the amount of glycans with high-mannose-type structure to that with plant-complex-type structure of extracellular glycoproteins is significantly different from that (ratio 10:90) previously found in intracellular glycoproteins [Palacpac et al., Biosci. Biotechnol. Biochem. 63 (1999) 35-39]. Extracellular glycoproteins have six distinct N-glycans (marked by *) from intracellular glycoproteins, and the high-mannose-type structures account for nearly 40% (Man5GlcNAc2, 28.8%; Man6GlcNAc2*, 6.4%; and Man7GlcNAc2*, 3.8%), while the plant-complex-type structures account for nearly 60% (GlcNAc2Man3Xyl1GlcNAc2*, 32.1%; GlcNAc1Man3Xyl1GlcNAc2 (containing two isomers)*, 6.2%; GlcNAc2Man3GlcNAc2*, 4.9%; Man3Xyl1Fuc1GlcNAc2, 8.3%; and Man3Xyl1GlcNAc2, 3.7%).  相似文献   

5.
The second major allergen of Chamaecyparis obtusa (Japanese cypress) pollen, Cha o 2, has been purified and its cDNA cloned. Of patients with pollinosis caused by C. obtusa, 82.5% produce IgE antibodies which react with purified Cha o 2. The purified protein has a molecular mass of 46 kDa and its 12 N-terminal amino acid sequence displays a high homology with that of Cry j 2, the second major allergen of Cryptomeria japonica pollen. cDNA clones coding for Cha o 2 have been isolated using Cry j 2 cDNA as a probe. Cha o 2 cDNA clones were sequenced and found to code a putative 50-residue signal sequence and a 464-residue mature protein with a molecular weight of 50 kDa. Two possible N-linked glycosylation sites were found in the sequence. The deduced amino acid sequence of Cha o 2 shows 74.3% identity with that of Cry j 2. In its primary structure, Cha o 2 shows significant identity with those of the polygalacturonases of avocado, tomato, and maize as well as Cry j 2.  相似文献   

6.
The structures of N-linked sugar chains of glycoproteins expressed in tobacco BY2 cultured cells are reported. Five pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were identified by two-dimensional PA-sugar chain mapping, ion-spray MS/MS analysis, and exoglycosidase digestions. The five structures fell into two categories; the major class (92.5% as molar ratio) was a xylose containing-type (Man3Fuc1 Xyl1GlcNAc2 (41.0%), GlcNAc2Man3Fuc1Xyl1GlcNAc2 (26.5%), GlcNAc1Man3Fuc1Xyl1GlcNAc2 (21.7%), Man3 Xyl1GlcNAc2 (3.3%)), and the minor class was a high-mannose type (Man5GlcNAc2 (7.5%)). This is the first report to show that alpha(1-->3) fucosylation of N-glycans does occur but beta(1-->4) galactosylation of the sugar chains does not in the tobacco cultured cells.  相似文献   

7.
As a part of our studies to elucidate the physiological significance of free N-glycans in differentiating or growing plant cells, we first demonstrate that two kinds of free N-glycans already occur at an early stage of seed development. In this report, we used the developing Ginkgo biloba seeds as a model plant, since we have already revealed a functional feature of the Ginkgo endo-beta-N-acetylglucosaminidase and structural features of N-glycans linked to storage glycoproteins in the developing seeds [Kimura, Y. et al. (1998) Biosci. Biotechnol. Biochem. 62, 253-261; Kimura, Y. and Matsuo, S. (2000) Biosci. Biotechnol. Biochem. 64, 562-568]. The structures of free N-glycans, which were determined by a combination of ESI-MS, sequential a-mannosidase digestions, partial acetolysis, and two dimensional sugar chain map, fell into two categories. One dominant species is a high-mannose type structure having one GlcNAc residue at the reducing end (Man(9-5)GlcNAc(1)). The concentration of this type of free glycan (as the pyridylaminated derivatives) is about 2.2 nmol in 1 g fresh weight. The detailed structural analysis revealed that the high-mannose type structures have a common core unit; Manalpha1-6(Man1-3)Manalpha1-6(Manalpha1-3)Ma nbeta1-4GlcNAc. The other minor species of free N-glycans is the plant complex type structure having an N-acetylchitobiose unit at the reducing end (Man(3)Xyl(1)Fuc(1)GlcNAc(2)). The concentration of this type of free glycan (as the pyridylaminated derivative) was about 75 pmol in 1 g fresh weight.  相似文献   

8.
We have determined the structures of N-glycans linked to major allergens in the mountain cedar (Juniperus ashei) pollen, Jun a 1. First, two kinds of the pollen glycoallergen (Jun a 1-A and Jun a 1-B) were purified from partially purified Jun a 1 by cation exchange chromatography. The N-glycans were liberated by hydrazinolysis from the two glycoallergens and the resulting sugar chains were N-acetylated and then coupled with 2-aminopyridine. Three pyridylaminated sugar chains were purified by reversed-phase HPLC and size-fractionation HPLC from Jun a 1-A and Jun a 1-B respectively. The structures were determined by a combination of exo- and endo-glycosidase digestions, two dimensional sugar chain mapping, and electrospray ionization mass spectrometry (ESI-MS) analysis. Structural analysis indicated that Lewis a epitope (Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-) occurs in the N-glycans of the pollen allergens.  相似文献   

9.
Structural changes in N-linked oligosaccharides of glycoproteins during seed development of Ginkgo biloba have been explored to discover possible endogenous substrate(s) for the Ginko endo-beta-N-acetylglucosaminidase (endo-GB; Kimura, Y., et al. (1998) Biosci. Biotechnol. Biochem., 62, 253-261), which should be involved in the production of high-mannose type free N-glycans. The structural analysis of the pyridylaminated oligosaccharides with a 2D sugar chain map, by ESI-MS/MS spectroscopy, showed that all N-glycans expressed on glycoproteins through the developmental stage of the Ginkgo seeds have the xylose-containing type (GlcNAc2 approximately 0Man3Xyl1Fuc1 approximately 0GlcNAc2) but no high-mannose type structure. Man3Xyl1Fuc1GlcNAc2, a typical plant complex type structure especially found in vacuolar glycoproteins, was a dominant structure through the seed development, while the amount of expression of GlcNAc2Man3Xyl1Fuc1GlcNAc2 and GlcNAc1Man3Xyl1Fuc1GlcNAc2 decreased as the seeds developed. The dominantly occurrence of xylose-containing type structures and the absence of the high-mannose type structures on Ginkgo glycoproteins were also shown by lectin-blotting and immunoblotting of SDS-soluble glycoproteins extracted from the developing seeds at various developmental stages. Concerning the endogenous substrates for plant endo-beta-N-acetylglucosaminidase, these results suggested that the endogenous substrates might be the dolicol-oligosaccharide intermediates or some glycopeptides with the high-mannose type N-glycan(s) derived from misfolded glycoproteins in the quality control system for newly synthesized glycoproteins.  相似文献   

10.
A basic glycoprotein, which was recognized by IgE from oil palm pollinosis patients, has been purified from oil palm pollen (Elaeis guineensis Jacq.), which is a strong allergen and causes severe pollinosis in Malaysia and Singapore. Soluble proteins were extracted from defatted palm pollen with both Tris-HCl buffer (pH 7.8) and Na-acetate buffer (pH 4.0). The allergenic glycoprotein was purified from the total extract to homogeneity with 0.4% yield by a combination of DEAE- and CM-cellulose, SP-HPLC, and gel filtration. The purified oil palm pollen glycoprotein with molecular mass of 31 kDa was recognized by the beta1-2 xylose specific antibody, suggesting this basic glycoprotein bears plant complex type N-glycan(s). The palm pollen basic glycoprotein, designated Ela g Bd 31 K, was recognized by IgE of palm pollinosis patients, suggesting Ela g Bd 31 K should be one of the palm pollen allergens. The preliminary structural analysis of N-glycans linked to glycoproteins of palm pollens showed that the antigenic N-glycans having alpha1-3 fucose and alpha1-2 xylose residues (GlcNAc(2 to approximately 0)Man3Xyl1Fuc(1 to approximately 0)GlcNAc2) actually occur on the palm pollen glycoproteins, in addition to the high-mannose type structures (Man(9 to approximately 5)GlcNAc2).  相似文献   

11.
Peptide immunotherapy using dominant T-cell epitopes is a safe treatment alternative to conventional subcutaneous injection of natural crude allergen extract, which is sometimes accompanied by anaphylactic shock. For Japanese cedar pollinosis (JCP), hybrid peptides composed of six to seven major T-cell epitopes (7Crp peptide) from the causative allergens Cry j 1 and Cry j 2 have been developed on the basis of different human leukemia antigen class II restrictions, because of the diversity of patients’ genetic backgrounds. However, other dominant T-cell epitopes that are produced in some patients are not covered by these peptides. To develop a more universal peptide vaccine for JCP, we generated transgenic rice seeds containing seven new T-cell epitopes (Crp3) in addition to the T-cell epitopes used in the 7Crp peptide. Next, we co-expressed unique T-cell epitopes (6Chao) from the Japanese cypress pollen allergens Cha o 1 and Cha o 2 in transgenic rice seeds, with 7Crp and Crp3. These transgenic rice seeds, containing many highly homologous T-cell epitopes derived from cedar and cypress allergens, are expected to be applicable to a wide range of patients suffering from these pollen allergies.  相似文献   

12.
The structures of N-glycans of total glycoproteins in royal jelly have been explored to clarify whether antigenic N-glycans occur in the famous health food. The structural feature of N-glycans linked to glycoproteins in royal jelly was first characterized by immunoblotting with an antiserum against plant complex type N-glycan and lectin-blotting with Con A and WGA. For the detail structural analysis of such N-glycans, the pyridylaminated (PA-) N-glycans were prepared from hydrazinolysates of total glycoproteins in royal jelly and each PA-sugar chain was purified by reverse-phase HPLC and size-fractionation HPLC. Each structure of the PA-sugar chains purified was identified by the combination of two-dimensional PA-sugar chain mapping, ESI-MS and MS/MS analyses, sequential exoglycosidase digestions, and 500 MHz 1H-NMR spectrometry. The immunoblotting and lectinblotting analyses preliminarily suggested the absence of antigenic N-glycan bearing beta1-2 xylosyl and/or alpha1-3 fucosyl residue(s) and occurrence of beta1-4GlcNAc residue in the insect glycoproteins. The detailed structural analysis of N-glycans of total royal jelly glycoproteins revealed that the antigenic N-glycans do not occur but the typical high mannose-type structure (Man(9 to approximately 4)GlcNAc2) occupies 71.6% of total N-glycan, biantennary-type structures (GlcNAc2Man3 GlcNAc2) 8.4%, and hybrid type structure (GlcNAc1 Man4GlcNAc2) 3.0%. Although the complete structures of the remaining 17% N-glycans; C4, (HexNAc3 Hex3HexNAc2: 3.0%), D2 (HexNAc2Hex5HexNAc2: 4.5%), and D3 (HexNAc3Hex4HexNAc2: 9.5%) are still obscure so far, ESI-MS analysis, exoglycosidase digestions by two kinds of beta-N-acetylglucosaminidase, and WGA blotting suggested that these N-glycans might bear a beta1-4 linkage N-acetylglucosaminyl residue.  相似文献   

13.
In this report, we describe that a salt adaptation of plant cells induces glycoform changes in N-glycoproteins. Intracellular and cell-wall glycopeptides were prepared from glycoproteins expressed in wild-type BY2 cells and salt-adapted cells. N-Glycans were liberated from those glycopeptides by hydrazinolysis, and the released oligosaccharides were N-acetylated and pyridylaminated. The structures of pyridylaminated (PA-) N-glycans were analyzed by a combination of two-dimensional sugar-chain mapping, MS analysis, and exoglycosidase digestion. In both wild-type cells and salt-adapted cells, the plant complex type structure was predominant among N-glycans expressed on glycoproteins, but we found that the Man2Xyl1Fuc1GlcNAc2 structure was significantly expressed on intracellular and cell-wall glycoproteins of the salt-adapted cells. Furthermore, enhancement of the specific activities of alpha-mannosidase and beta-N-acetylglucosaminidase was observed in the salt-adapted BY2 cells, suggesting that the glycoform changes are due to changes in glycosidase activities.  相似文献   

14.
A method has been developed which allows the analysis of glycoproteins separated by SDS-PAGE. The procedure, though applicable to N-glycosylated glycoproteins of any origin, is particularly devised for glycoproteins potentially containing fucose in alpha1,3-linkage to the reducing GlcNAc as may be found in plants and invertebrates, e.g., insects and parasitic helminths. Starting with an established procedure for mass spectrometric peptide mapping, the analysis of N-glycans by matrix-assisted laser desorption/ionization mass spectrometry involved the use of peptide:N-glycosidase A, a triphasic microcolumn for sample cleanup, and a new matrix mixture consisting of 2,5-dihyhydroxybenzoic acid, 1-hydroxyisoquinoline, and arabinosazone. The method was tested on proteins with N-glycans of known structure, i.e., as horseradish peroxidase, zucchini ascorbate oxidase, soybean agglutinin, honeybee venom hyaluronidase, bovine ribonuclease B, and bovine fetuin. An electrophoretic band corresponding to 4 microg of glycoprotein was generally sufficient to allow detection of the major N-glycan species. As an additional benefit, a peptide mass map is generated which serves to identify the analyzed protein. The method was applied to glycoprotein allergens whose glycan structures were unknown. Ara h 1 and Ole e 1, major allergens from peanut and olive pollen, respectively, contained mainly xylosylated N-glycans with the composition Man(3(-4))XylGlcNAc(2) in the case of Ara h 1 and GlcNAc(1-2)Man(3)XylGlcNAc(2) in the case of Ole e 1 where also some GlcNAc(0-2)Man(3)XylFucGlcNAc(2) was found.  相似文献   

15.
An alpha-mannosidase was purified from developing Ginkgo biloba seeds to apparently homogeneity. The molecular weight of the purified alpha-mannosidase was estimated to be 120 kDa by SDS-PAGE in the presence of 2-mercaptoethanol, and 340 kDa by gel filtration, indicating that Ginkgo alpha-mannosidase may function in oligomeric structures in the plant cell. The N-terminal amino acid sequence of the purified enzyme was Ala-Phe-Met-Lys-Tyr-X-Thr-Thr-Gly-Gly-Pro-Val-Ala-Gly-Lys-Ile-Asn-Val-His-Leu-. The alpha-mannosidase activity for Man(5)GlcNAc(1) was enhanced by the addition of Co(2+), but the addition of Zn(2+), Ca(2+), or EDTA did not show any significant effect. In the presence of cobalt ions, the hydrolysis rate for pyridylaminated Man(6)GlcNAc(1) was significantly faster than that for pyridylaminated Man(6)GlcNAc(2), suggesting the possibility that this enzyme is involved in the degradation of free N-glycans occurring in developing plant cells (Kimura, Y., and Matsuo, S., J. Biochem., 127, 1013-1019 (2000)). To our knowledge, this is the first report showing that plant cells contain an alpha-mannosidase, which is activated by Co(2+) and prefers the oligomannose type free N-glycans bearing only one GlcNAc residue as substrate.  相似文献   

16.
The second major allergen of Juniperus ashei (mountain cedar) pollen, Jun a 2, has been purified and its cDNA cloned. The purified protein has a molecular mass of 43 kDa and its N-terminal 9-residue amino acid sequence is highly homologous to those of Cry j 2 and Cha o 2, the second major allergen of Cryptomeria japonica and Chamaecyparis obtusa pollen, respectively. cDNA clones encoding Jun a 2 were isolated after PCR based amplification, and their nucleotide sequences were determined. The cDNA contains an open reading frame of 507 amino acid residues, and encodes a putative 54-residue signal sequence and a 453-residue intermediate, which releases a C-terminal fragment upon maturation. Three possible N-linked glycosylation sites and 20 cystein-residues are found in the deduced amino acid sequence. The amino acid sequence of Jun a 2 shows 70.7 and 82.0% identity with those of Cry j 2 and Cha o 2, respectively. Immunological observations that IgE antibodies in sera of Japanese pollinosis patients bind not only to Cry j 2 and Cha o 2 but also to Jun a 2 strongly suggest that Jun a 2 is an allergen of mountain cedar pollen, and that allergenic epitopes of these three allergens are similar.  相似文献   

17.
The primary structure of the N-linked sugar chains of glucose oxidase from Aspergillus niger was investigated. These sugar chains were released from the polypeptide backbone by hydrazinolysis, and the reducing ends of the sugar chains were pyridylaminated. HPLC of the pyridylamino sugar chains with an amide-silica column showed at least seven sugar chain peaks. Chemical and exoglycosidase digestion and 400 lMHz H-NMR studies of the sugar chains of lower molecular weight showed that these were novel oligomannose-type sugar chains, (Man)5-7 (GlcNAc)2, with the structure: +/- Man alpha 1----3Man alpha 1----3(Man alpha 1----6)Man alpha 1----6(+/- Man alpha 1----3Man alpha 1---3)Man )Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

18.
S-RNases encoded by the S-locus of rosaceous and solanaceous plants discriminate between the S-alleles of pollen in gametophytic self-incompatibility reactions, but it is not clear how. We report the structures of N-glycans attached to each of the N-glycosylation sites of seven S-RNases in Pyrus pyrifolia of the Rosaceae. The structures were identified by chromatographic analysis of pyridylaminated sugar chains prepared from S4-RNase and by liquid chromatography/electrospray ionization-mass spectrometric analysis of the protease digests of reduced and S-carboxymethylated S-RNases. S4-RNase carries various types of sugar chains, including plant-specific ones with beta1-->2-linked xylose and alpha1-->3-linked fucose residues. More than 70% of the total N-glycans of S4-RNase are, however, an N-acetylglucosamine or a chitobiose (GlcNAcbeta1-->4GlcNAc), which has not been found naturally. The N-acetylglucosamine and chitobiose are mainly present at the N-glycosylation sites within the putative recognition sites of the S-RNase, suggesting that these sugar chains may interact with pollen S-product(s).  相似文献   

19.
The glycoprotein allergen Art v II, from the pollen of mugwort (Artemisia vulgaris L.) was treated with peptide:N-glycosidase F (PNGase F) to release asparagine-linked oligosaccharides. The oligosaccharides were isolated by gel permeation chromatography and their structures determined by 500-MHz 1H NMR spectroscopy, fast atom bombardment-mass spectrometry, and high-pH anion-exchange chromatography. The high-mannose oligosaccharides Man5GlcNAc2, Man6GlcNAc2, Man7GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 were present in the ratios 2:49:19:24:6 and accounted for all the asparagine-linked oligosaccharides released from Art v II by PNGase F. The NH2-terminal amino acid sequences of Art v II and of four peptides generated by cyanogen bromide (CNBr) cleavage of deglycosylated Art v II were determined. The first 30 amino acid residues of Art v II did not contain any potential N-glycosylation sites. One potential N-glycosylation site was identified in one of the CNBr fragments. The native protein conformation was shown by enzyme-linked immunosorbent assay inhibition assays to be essential for the binding of rabbit IgG to Art v II and for the binding of human IgE to the major IgE-binding epitope(s) in this allergen. At least one minor IgE-binding epitope still bound IgE after denaturation of the allergen. Removal of the high-mannose chains from denatured Art v II had no significant effect on the binding of human IgE to the minor IgE-binding epitope(s).  相似文献   

20.
The structures of unconjugated or free N-glycans in stems of soybean seedlings and dry seeds have been identified. The free N-glycans were extracted from the stems of seedlings or defatted dry seeds. After desalting by two kinds of ion-exchange chromatography and a gel filtration, the free N-glycans were coupled with 2-aminopyridine. The resulting fluorescence-labeled (PA-) N-glycans were purified by gel filtration, Con A affinity chromatography, reverse-phase HPLC, and size-fractionation HPLC. The structures of the PA-sugar chains purified were analyzed by the combination of two-dimensional sugar chain mapping, jack bean alpha-mannosidase digestion, alpha-1,2-mannosidase digestions, partial acetolysis, and ESI-MS/MS. The free N-glycan structures found showed that two categories of free N-glycans occur in the stems of soybean seedlings. One is a high-mannose type structure having one GlcNAc residue at the reducing end (Man 9 approximately 5 GlcNAc1, 93%), that would be derived by endo-GM (Kimura, Y. et al., Biochim. Biophys. Acta, 1381, 27-36 (1998)). The other small component is a xylose-containing type one having two GlcNAc residues at the reducing end (Man3Xyl1GlcNAc2, 7%), which would be derived by PNGase-GM (Kimura, Y. and Ohno, A., Biosci. Biotechnol. Biochem., 62, 412-418 (1998)). The detailed structural analysis of free glycans showed that high-mannose type free N-glycans (Man 9 approximately 5 GlcNAc1) in the soybean seedlings have a common core structural unit; Manalpha1-6(Man1-3)Manalpha1-6(Manalpha1-3)Ma nbeta1-4GlcNAc. Comparing the amount of free N-glycans in the seedling stems and dry seeds, the amount in the stems of seedlings was much higher than that in the dry seeds; approximately 700 pmol per one stem, 8 pmol in one dry seed. This fact suggested that free N-glycans in soybean seedlings could be produced by two kinds of N-glycan releasing enzymes during germination or seedling-development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号