首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TGF-beta1 (TGF) has been implicated in the pathogenesis of several chronic infections and is thought to promote microbial persistence by interfering with macrophage function. In rats with experimental pulmonary cryptococcosis, increased lung levels of TGF were present at 12 mo of infection. Within the lung, expression of TGF localized to epithelioid cells and foamy macrophages in areas of inflammation. Increased TGF expression was also observed in the lungs of experimentally infected mice and a patient with pulmonary cryptococcosis. TGF reduced Ab and serum-mediated phagocytosis of Cryptococcus neoformans by rat alveolar macrophages (AM) and peripheral blood monocytes, and this was associated with decreased chemokine production and oxidative burst. Interestingly, TGF-treated rat AM limited both intracellular and extracellular growth of C. neoformans. Control of C. neoformans growth by TGF-treated rat AM was due to increased secretion of lysozyme, a protein with potent antifungal activity. The effects of TGF on the course of infection were dependent on the timing of TGF administration relative to the time of infection. TGF treatment of chronically infected rats resulted in reduced lung fungal burden, while treatment early in the course of infection resulted in increased fungal burden. In summary, our studies suggest a dual role for TGF in persistent fungal pneumonia whereby it contributes to the local control of infection by enhancing macrophage antifungal efficacy through increased lysozyme secretion, while limiting inflammation by inhibiting macrophage/monocyte phagocytosis and reducing associated chemokine production and oxidative burst.  相似文献   

2.
Immunity to the opportunistic fungus Cryptococcus neoformans is dependent on cell-mediated immunity. Individuals with defects in cellular immunity, CD4(+) T cells in particular, are susceptible to infection with this pathogen. In host defense against a number of pathogens, CD8(+) T cell responses are dependent upon CD4(+) T cell help. The goal of these studies was to determine whether CD4(+) T cells are required for the generation of antifungal CD8(+) T cell effectors during pulmonary C. neoformans infection. Using a murine intratracheal infection model, our results demonstrated that CD4(+) T cells were not required for the expansion and trafficking of CD8(+) T cells to the site of infection. CD4(+) T cells were also not required for the generation of IFN-gamma-producing CD8(+) T cell effectors in the lungs. In CD4(-) mice, depletion of CD8(+) T cells resulted in increased intracellular infection of pulmonary macrophages by C. neoformans, increasing the pulmonary burden of the infection. Neutralization of IFN-gamma in CD4(-)CD8(+) mice similarly increased macrophage infection by C. neoformans, thereby blocking the protection provided by CD8(+) T cells. Altogether, these data support the hypothesis that effector CD8(+) T cell function is independent of CD4(+) T cells and that IFN-gamma production from CD8(+) T cells plays a role in controlling C. neoformans by limiting survival of C. neoformans within macrophages.  相似文献   

3.
4.
It has been recognized that macrophages play an important role in controlling virus infection in experimental animal models. To evaluate the role of macrophages in acute murine cytomegalovirus infection, macrophages in the spleen and the liver were eliminated by an intravenous injection of liposomes containing a cytolytic agent, dichloromethylene diphosphonate. The depletion of macrophages led to a significant increase of virus titer in the spleen and lungs in both susceptible BALB/c and resistant C57BL/6 mice during the first three days after intravenous infection. In the spleen, the increase of virus titer in macrophage-depleted BALB/c mice was much greater than that in NK cell-depleted mice. These results suggest that macrophages contribute to protection mainly by the mechanisms which are independent of NK cells during the first three days after infection. The increase of virus titer in macrophage-depleted C57BL/6 mice was as great as that in NK cell-depleted mice because of the high contribution of NK cells to protection in C57BL/6 mice. In the liver in both strains of mice, the effects of macrophage depletion on virus titer were not as much as those in the spleen and lungs. Furthermore, the local depletion of peritoneal macrophages resulted in a great increase of virus titer in the spleen at three days after intraperitoneal infection. We conclude that macrophages greatly contribute to decreasing the virus load in some organs possibly through either or both intrinsic and extrinsic mechanisms in the early phase of primary infection with murine cytomegalovirus.  相似文献   

5.
The immunosuppressive effect of Trypanosoma lewisi infection on alveolar macrophage (AM) activities against Cryptococcus neoformans was studied in an animal model. Two groups of rats were treated with T. lewisi and killed after 4 (4d-rats) and 7 days (7d-rats), respectively. A third group not given T. lewisi, served as control. AM were challenged in vitro with C. neoformans. Phagocytosis was assessed with a fluorescence method. Superoxide anion production was evaluated with the nitroblue tetrazolium (NBT) test. The survival of cryptococci was estimated by counting colony-forming units. The numbers of detached AM from culture plates were determined using a Bürker chamber. The NBT response, adhesion to plate surface and killing activity, but not the phagocytosis of AM from 4d-rats were significantly impaired compared to control or 7d-rats. Thus, T. lewisi causes transitory immunosuppressive effects on AM activities. This rapid T. lewisi immunosuppression model may be useful to study new approaches to anticryptococcal therapy.  相似文献   

6.
Mycobacterium tuberculosis bacilli are intracellular organisms that reside in phagosomes of alveolar macrophages (AMs). To determine the in vivo role of AM depletion in host defense against M. tuberculosis infection, mice with pulmonary tuberculosis induced by intranasal administration of virulent M. tuberculosis were treated intranasally with either liposome-encapsulated dichloromethylene diphosphonate (AM(-) mice), liposomes, or saline (AM(+) mice). AM(-) mice were completely protected against lethality, which was associated with a reduced outgrowth of mycobacteria in lungs and liver, and a polarized production of type 1 cytokines in lung tissue, and by splenocytes stimulated ex vivo. AM(-) mice displayed deficient granuloma formation, but were more capable of attraction and activation of T cells into the lung and had increased numbers of pulmonary polymorphonuclear cells. These data demonstrate that depletion of AMs is protective during pulmonary tuberculosis.  相似文献   

7.
Abstract: Effects of acute and chronic administration of 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were investigated for dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid, in nucleus caudatus putamen (NCP), limbic system, and substantia nigra (SN) of golden hamster and BALB/c and C57/BL mice to obtain a clue for the variance of MPTP toxicity between the strains and species. Regional differences in the levels of monoamine oxidase (MAO) and the in vitro effects of MAO inhibitors were also determined and correlated with MPTP neurotoxicity. Concentrations of MPTP in the brains of mice and golden hamster at 10 min were comparable. Golden hamster was found to be resistant to the administration of MPTP as indicated by a lack of any alteration from the normal content of DA in NCP, limbic system, and SN. Both strains of mice exhibited >50% and >75% depletion of DA (C57/BL and BALB/c, respectively). The metabolites-to-DA ratios were decreased and increased in golden hamster and mouse strains, respectively, after acute or chronic treatment. Whereas the content of total MAO in golden hamster was one-third to one-sixth of any nuclei or mitochondria of both strains of mice, the ratio of MAO A to B was significantly higher in the former species. A possible involvement of discrete regional MAO activity in determining the extent of susceptibility of a species to MPTP toxicity is indicated from the study because (1) susceptibility as evidenced by DA depletion of a species coincided with high levels of MAO activity in SN and NCP, and (2) a highly positive correlation existed with total MAO and MAO B activity, there was a lack of correlation with MAO A activity, and a negative correlation existed with MAO A-to-B ratio and DA depletion. Hence, we propose that the resistance of a species to MPTP toxicity may depend on the content as well as the ratios of the two forms of MAO in NCP and SN. In other words, a higher MAO activity and a relative dominance of MAO B in these nuclei are critical in determining the susceptibility of a species to MPTP neurotoxicity.  相似文献   

8.
T cell-mediated immunity has been shown to play an important role in the host defense to Cryptococcus neoformans. Infections due to C. neoformans are increased in patients with AIDS who are deficient in the CD4+ subset of T lymphocytes. Thus, the effect of CD4+ (L3T4+) lymphocyte depletion on murine host defenses to C. neoformans was studied. The mAb GK 1.5 was administered to mice, and CD4+ T lymphocyte depletion was confirmed by the analysis of T cell subsets in blood, spleen, lymph node, and lung. Evidence of a functional defect was confirmed by demonstrating that the splenocytes of treated mice were unable to proliferate in response to class II incompatible spleen cells. Furthermore, delayed type hypersensitivity to C. neoformans was abrogated by CD4+ lymphocyte depletion. Mice depleted of CD4+ lymphocytes were inoculated with a virulent strain of C. neoformans by the i.v. or the intratracheal route. After i.v. inoculation of C. neoformans, the survival of mice depleted of CD4+ lymphocytes was reduced (27.8 +/- 1.8 vs 36.0 +/- 3.1 days, p less than 0.04). After intratracheal inoculation, C. neoformans disseminated from the lung to extrapulmonary organs. Dissemination occurred earlier in mice depleted of CD4+ lymphocytes compared to mice that received control antibody, and the burden of C. neoformans in extrapulmonary organs was greater in mice depleted of CD4+ lymphocytes than control mice. Surprisingly, there was no increase in the burden of C. neoformans in the lungs of CD4+ lymphocyte-depleted mice. Survival of mice inoculated with C. neoformans and depleted of CD4+ lymphocytes was reduced compared to control mice and was related to the increased rate of accumulation of organisms in the brains of treated mice. The mean survival of GK 1.5-treated mice was 34.1 +/- 0.9 days compared to control mice with a mean survival of 40.6 +/- 9 days (p less than 0.001). These data suggest that CD4+ lymphocytes play a prominent role in the host defense of infections due to C. neoformans, that CD4+ lymphocytes are required in extrapulmonary organs for optimal clearance of C. neoformans and that CD4+ lymphocytes are critical for survival of mice infected with C. neoformans.  相似文献   

9.
Vidotto  Valerio 《Mycopathologia》1998,142(2):71-76
Secreted phospholipase has been recently proposed as a virulence determinant in Cryptococcus neoformans as well as Candida albicans. This issue of cryptococcal phospholipase requires screening of phospholipase production in a larger number of isolates from clinical and environmental sources. In this study we examined phospholipase production in a total of 67 C. neoformans isolates from AIDS patients and bird droppings by using the egg-yolk plate method. Phenoloxidase activity, capsule size and growth at 37 °C were also measured in these strains in order to observe a possible relationship between phospholipase production of different C. neoformans strains and its virulence. Four of the 21 AIDS strains at 28 °C and 1 at 37 °C did not produce phospholipase, respectively. In contrast, 38 and 34 of the 46 bird dropping strains were negative for phospholipase production at 28, and 37 °C, respectively. Statistical analysis revealed a significant difference in phospholipase production, capsule size and growth ability at 37 °C, but not phenoloxidase activity, between the AIDS and the bird dropping strains. The highly prevalent distribution of phospholipase activity in the AIDS strains suggests a role of the enzyme in invading the host. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Initiation of a protective immune response to infection by the pathogenic fungus Cryptococcus neoformans is mediated in part by host factors that promote interactions between immune cells and C. neoformans yeast. Surfactant protein A (SP-A) contributes positively to pulmonary host defenses against a variety of bacteria, viruses, and fungi in part by promoting the recognition and phagocytosis of these pathogens by alveolar macrophages. In the present study we investigated the role of SP-A as a mediator of host defense against the pulmonary pathogen, C. neoformans. Previous studies have shown that SP-A binds to acapsular and minimally encapsulated strains of C. neoformans. Using in vitro binding assays we confirmed that SP-A does not directly bind to a fully encapsulated strain of C. neoformans (H99). However, we observed that when C. neoformans was incubated in bronchoalveolar fluid, SP-A binding was detected, suggesting that another alveolar host factor may enable SP-A binding. Indeed, we discovered that SP-A binds encapsulated C. neoformans via a previously unknown IgG dependent mechanism. The consequence of this interaction was the inhibition of IgG-mediated phagocytosis of C. neoformans by alveolar macrophages. Therefore, to assess the contribution of SP-A to the pulmonary host defenses we compared in vivo infections using SP-A null mice (SP-A-/-) and wild-type mice in an intranasal infection model. We found that the immune response assessed by cellular counts, TNFalpha cytokine production, and fungal burden in lungs and bronchoalveolar lavage fluids during early stages of infection were equivalent. Furthermore, the survival outcome of C. neoformans infection was equivalent in SP-A-/- and wild-type mice. Our results suggest that unlike a variety of bacteria, viruses, and other fungi, progression of disease with an inhalational challenge of C. neoformans does not appear to be negatively or positively affected by SP-A mediated mechanisms of pulmonary host defense.  相似文献   

11.
12.
The role of alveolar macrophages (AM) in host defense against pulmonary infection has been difficult to establish using in vivo models. This may reflect a reliance on models of fulminant infection. To establish a unique model of resolving infection, with which to address the function of AM, C57BL/6 mice received low-dose intratracheal administration of pneumococci. Administration of low doses of pneumococci produced a resolving model of pulmonary infection characterized by clearance of bacteria without features of pneumonia. AM depletion in this model significantly increased bacterial outgrowth in the lung. Interestingly, a significant increase in the number of apoptotic AM was noted with the low-dose infection as compared with mock infection. Caspase inhibition in this model decreased AM apoptosis and increased the number of bacteremic mice, indicating a novel role for caspase activation in pulmonary innate defense against pneumococci. These results suggest that AM play a key role in clearance of bacteria from the lung during subclinical infection and that induction of AM apoptosis contributes to the microbiologic host defense against pneumococci.  相似文献   

13.
We show that granulocytes (PMN) have a dual role in the development of Ehrlich Ascites Tumor (EAT) in mice. EAT intraperitoneal inoculation causes a local inflammatory reaction, ascites development and mortality that distinguish resistant and susceptible strains. In resistant mice (CAF1), there is a less pronounced PMN influx after EAT inoculation than in susceptible Swiss mice. Accordingly, the increase in peritoneal PMN numbers enhanced tumor growth in CAF1 mice, but had no effect in the susceptible Swiss animals. Contrastingly, PMN depletion had no effect in resistant mice but facilitated tumor growth in susceptible animals. Though no differences were noted between the strains in peritoneal cell spreading and hydrogen peroxide release after tumor inoculation, in vitro PMN cytotoxic activity against EAT was significantly higher in susceptible Swiss mice. These data indicate a paradoxical dual role for PMN against EAT: while they help control tumor development in susceptible animals, they seem to enhance tumor growth in resistant mice.  相似文献   

14.
In the present study, we compared the B cell response of BALB/c and C57Bl/6 mice during Cryptococcus neoformans infection. This response was investigated using virulent serotype D forms of mating types alpha and a (MAT alpha and MAT a). C57Bl/6 mice showed massive (mainly cerebral) infection by both types, while BALB/c were resistant to infection. Some resistance of C57Bl/6 mice was induced by previous immunization with the capsular polysaccharide from MAT alpha. Passive immunization of C57Bl/6 mice with purified antibody (Ab) obtained from capsular polysaccharide-immunized mice also increased resistance to infection. Both mouse strains showed comparable low IgM response to the capsular polysaccharide from MAT alpha, and only C57Bl/6 mice produced IgM to the polysaccharide of MAT a. Comparable levels of different immunoglobulin (Ig) isotypes against capsular components of MAT alpha and MAT a were detected, and the response of C57Bl/6 mice was higher when compared to that of BALB/c mice. FACS analysis indicated an increase in the percentage of a high-granulosity (side-scatter) splenic subpopulation and in the percentage of splenic Gr-1+ cells in infected C57Bl/6 mice. In addition, the percentage of follicular splenic B cells was decreased after C. neoformans infection of C57Bl/6 mice. This response was more pronounced when we investigated infection induced by the MAT a mating type. Taken together, our results indicate that capsular polysaccharide derived from MAT alpha and MAT a types of C. neoformans have a stimulatory effect upon B cells but that there is no correlation between resistance of BALB/c mice and Ab production. However, the increase in resistance of C57Bl/6 mice parallels the production of Abs and a major change in splenic cell populations.  相似文献   

15.
In vitro growth kinetics of two Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) clones in myocardial cells from rodents of different susceptibility. Two Trypanosoma cruzi isolates, TCR-4 from Costa Rica and UES-1 from El Salvador, were studied in vitro to compare their infectivity or resistance and intracellular replication in myocardial cells in three strains of mice and rats: NGP white mice, C3 H mice and Sprague Dowley rats. Myocardial cells were cultured on coverslips at 37 degrees C in a humid 10% CO2 atmosphere and then infected at a ratio of one tripomastigote per cell. Samples were studied after 24, 72, 96 and 120 h of infection to determine parasite infection capacity and intracellular multiplication. Both parasites had the highest infection capacity in C3 H mice, followed by NGP mice cells with a very low infection rate. Lastly, almost no Trypanosoma cruzi multiplication was observed in Sprague Dowley rats, suggesting a strong natural resistance in this animal to both strains of the parasite. The UES-1 isolate presented higher multiplication and greater invasion than the TCR-4 strain, showing greater virulence of UES-1 in heart cells, at least in vitro.  相似文献   

16.
Alveolar macrophages (AM) were collected by repeated endobronchial lavage from mice, rats, guinea pigs, and rabbits, and titrated into cultures of mitogen-stimulated syngeneic or autochthonous lymphocytes. Significant species differences were detected in regard to AM activity in the cultures. AM from guinea pigs and mice stimulated PHA-induced lymphoproliferation, while those from rats and rabbits were inhibitory; blood or peritoneal macrophages were not inhibitory in any of the species examined.  相似文献   

17.
Serum colony-forming activity (CSA) and colony-forming cells (CFC) of resistant (C57BL/10 ScSn) and susceptible (BALB/cJ) mice were studied during Listeria monocytogenes infection. Key findings were also checked in susceptible CBA/H mice. Prompt, bacterial dose-dependent increases in serum CSA were observed in all mice following infection. In response to the same challenge dose, serum CSA increased more in susceptible mice, possibly because rapid bacterial proliferation lead to high bacterial numbers. Thus CSA is not a limiting factor which accounts for the differences in Listeria resistance, but is produced in response to bacterial load. In uninfected mice, there were higher numbers of colony-forming cells in the bone marrow and spleen of resistant mice than in susceptible mice. By 24 hr postinfection there was a sharp drop in total cell numbers including CFC, in the bone marrow of resistant C57BL/10 ScSn mice. This coincides with the time when monocytes have been first observed in the blood of infected mice and when differences in bacterial growth between the mouse strains were first observable. Since the superior resistance of C57BL/10 mice has been shown to be radiosensitive, it is probable that this larger, readily mobilized reserve of monocyte/granulocyte precursors in the resistant mice plays an important role in early control of infection. The significance of this is discussed.  相似文献   

18.
Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in "host" susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter "host" resistance, and a novel means to alter enteric infection and to study host-pathogen interactions.  相似文献   

19.
Virus-specific cytotoxic T lymphocytes (CTL) are thought to be responsible for the eradication of respiratory influenza virus infections by direct cytolysis of virus-infected epithelial cells. In this study, we provide evidence for a role for alveolar macrophages (AM) in the regulation of pulmonary virus-specific CTL responses. Prior to infection with influenza virus, AM were selectively eliminated in vivo with a liposome-mediated depletion technique, and virus-specific CTL activities of lung and mediastinal lymph node (MLN) cells were assayed ex vivo and compared with those for normal mice. AM depletion resulted in increased primary CTL responses and changed the kinetics of the CTL response. Flow cytometric analysis of lung and MLN cells showed that the percentage of CD8+ cells was not altered after AM depletion and that lung cells from AM-depleted mice had an increased capacity to lyse virus-infected cells. Upon restimulation in vitro, virus-specific CTL activity in lung cells of normal mice was similar to that in lung cells of AM-depleted mice. Furthermore, elimination of AM resulted in increased virus titers in the lung, but virus clearance as a function of time was not affected. Our results show that AM regulate virus-specific CTL responses during respiratory influenza virus infection by removing viral particles, by downregulating the priming and activity of CTL in MLN cells, and by inhibiting the expansion of virus-specific CTL in the lung.  相似文献   

20.
Urease is an enzyme considered one of the main virulence factors in Cryptococcus neoformans. Quantitative differences in urease production between C. neoformans and the new species Cryptococcus gattii have not been so far documented. Using a standardized method, 25 isolates of C. neoformans and 19 of C. gattii were seeded in Christensen urea broth medium for urease activity detection. Approximately, the 50% of activity of one unit of commercial jack beans urease (A550=0.215) was considered as a reference to classified the Cryptococcus in two cathegories, low (A550<0.215) or high (A550=or>0.215) urease producers. After 72 hours of incubation, 76% of C. neoformans and 15.8% of C. gattii strains were high urease producers (p=0.016). Based on these results, the species C. neoformans appeared as the highest urease producer. Other virulence factors should also be investigated to explain C. gattii pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号