首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Bukhtiyarova  R Yang    B Ray 《Applied microbiology》1994,60(9):3405-3408
The 3,500-bp pap operon in the 8,877-bp plasmid pSMB74 contains a cluster of four genes, papABCD, of which papA encodes prepediocin (A. M. Motlagh, M. Bukhtiyarova, and B. Ray, Lett. Appl. Microbiol. 18:305-312, 1994). The cluster without the promoter was cloned in the shuttle vector pHPS9. An Escherichia coli strain and a pediocin-sensitive Pediococcus acidilactici strain transformed with the recombinant plasmid, pMBR1.0, produced pediocin AcH. Deletion analysis by introducing mutations in the four genes in pMBR1.0 revealed that only papA and papD were required for pediocin AcH production and that the gene product of papD has both translocation and processing functions. In the transformed minicells of E. coli chi 925 the proteins of the pap cluster were synthesized, indicating no polar effect due to deletion.  相似文献   

2.
In pediocin AcH producing Pediococcus acidilactici strains the genes for both the production of pediocin and immunity against it are encoded in an 8.9 kb plasmid pSMB74. Following loss of this plasmid, the variants lost the ability to produce pediocin AcH, but some retained the resistance against it. This resistance was a transient trait, acquired while nonproducing cells grew in the presence of pediocin AcH but lost when the cells were grown in the absence of it.  相似文献   

3.
N-terminal analysis of purified pediocin AcH produced a partial sequence of 23 amino acids. This sequence matched perfectly with a segment of 23 amino acids in a 62 amino acid molecule generated from the 186 nucleotide sequence open reading frame in a Hind III fragment in pSMB74 encoding pap-gene (pediocin AcH production). It is suggested that the molecule is translated as inactive prepediocin AcH of 62 amino acids. Then through enzymatic modifications the leader segment of 18 amino acids is removed from the NH2-terminal. The remaining segment of 44 amino acids is active pediocin AcH of 4628 M(r).  相似文献   

4.
A plasmid-linked antimicrobial peptide, named coagulin, produced by Bacillus coagulans I(4) has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42-50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I(4). Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilactici strains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI(4) DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 from P. acidilactici and pI(4) when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus.  相似文献   

5.
A plasmid-linked antimicrobial peptide, named coagulin, produced by Bacillus coagulans I4 has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42–50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I4. Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilactici strains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI4 DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 from P. acidilactici and pI4 when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus.  相似文献   

6.
A RAPD analysis performed using a single primer targeted to the pediocin AcH/PA-1 gene was carried out on several P. acidilactici strains and on some related species of lactic acid bacteria. The high degree of genetic variability detected in P. acidilactici strains did not allow the selection of a common RAPD fragment that could be chosen as a potential species-specific DNA marker. Nevertheless a 700 bp fragment, that was found to be peculiar of all potential pediocin producer strains analyzed, was cloned and sequenced with the aim to develop a species specific PCR marker. Sequence analysis of the cloned 700 bp fragment showed one putative small open reading frame (ORF1), with no significant homology with known genes, and a partial putative second coding region (ORF2) with a high degree of similarity with several methionyl tRNA synthesis (metS) genes. The two coding regions were separated by a short spacer region. Primers targeted to ORF2 plus part of the spacer region and primers designed for the amplification of the entire cloned RAPD fragment were found to be species-specific for the detection of P. acidilactici strains. Furthermore primers designed on the ORF1 sequence allowed the amplification of a 439 bp fragment only in some P. acidilactici strains, including pediocin producing strains.  相似文献   

7.
Plantaricin 423 is a class IIa bacteriocin produced by Lactobacillus plantarum isolated from sorghum beer. It has been previously determined that plantaricin 423 is encoded by a plasmid designated pPLA4, which is now completely sequenced. The plantaricin 423 operon shares high sequence similarity with the operons of coagulin, pediocin PA-1, and pediocin AcH, with small differences in the DNA sequence encoding the mature bacteriocin peptide and the immunity protein. Apart from the bacteriocin operon, no significant sequence similarity could be detected between the DNA or translated sequence of pPLA4 and the available DNA or translated sequences of the plasmids encoding pediocin AcH, pediocin PA-1, and coagulin, possibly indicating a different origin. In addition to the bacteriocin operon, sequence analysis of pPLA4 revealed the presence of two open reading frames (ORFs). ORF1 encodes a putative mobilization (Mob) protein that is homologous to the pMV158 superfamily of mobilization proteins. Highest sequence similarity occurred between this protein and the Mob protein of L. plantarum NCDO 1088. ORF2 encodes a putative replication protein that revealed low sequence similarity to replication proteins of plasmids pLME300 from Lactobacillus fermentum and pYIT356 from Lactobacillus casei. The immunity protein of plantaricin 423 contains 109 amino acids. Although plantaricin 423 shares high sequence similarity with the pediocin PA-1 operon, no cross-reactivity was recorded between the immunity proteins of plantaricin 423 and pediocin PA-1.  相似文献   

8.
Plasmids encoding bacteriocin production phenotype in four Pediococcus acidilactici strains and their derivatives were examined for restriction enzyme cleavage patterns and found to produce similar fragments. A restriction map of this plasmid, pSMB74, has been constructed.  相似文献   

9.
The peptide, pediocin AcH, from Pediococcus acidilactici H binds to the cell surface of Lactobacillus plantarum NCDO 955, its resistant mutant and several other sensitive and resistant Gram-positive bacteria but not to Gram-negative bacteria. Sensitive cells, following treatment with pediocin AcH, lost intracellular K ions, u.v.-absorbing materials, became more permeable to ONPG and, in some strains, lysed. Binding of pediocin AcH was maximum at pH 6.0. Anions of several salts inhibited binding of pediocin AcH but this was overcome by increased concentrations of pediocin AcH. Treatment of sensitive cells with 1% SDS, 4 mol/1 guanidine-HCl, several organic solvents and enzymes did not reduce subsequent binding of pediocin AcH. Partially purified cell wall from a sensitive strain was also able to bind pediocin AcH. However, treatment of the cell walls to remove lipoteichoic acid prevented binding. These molecules might, therefore, be one of the binding sites of pediocin AcH.  相似文献   

10.
An antimicrobial peptide designated pediocin AcH was isolated from Pediococcus acidilactici strain H. The pediocin AcH was purified by ion exchange chromatography. The molecular weight of pediocin AcH was determined by SDS-PAGE to be about 2700 daltons. Pediocin AcH was sensitive to proteolytic enzymes, resistant to heat and organic solvents, and active over a wide range of pH. Pediocin AcH exhibited inhibition against several food spoilage bacteria and foodborne pathogens including Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes. It was bactericidal to sensitive cells and acted very rapidly. The bactericidal effect was not produced by either cell lysis or apparent loss of membrane permeability.  相似文献   

11.
An antimicrobial peptide designated pediocin AcH was isolated from Pediococcus acidilactici strain H. The pediocin AcH was purified by ion exchange chromatography. The molecular weight of pediocin AcH was determined by SDS-PAGE to be about 2700 daltons. Pediocin AcH was sensitive to proteolytic enzymes resistant to heat and organic solvents, and active over a wide range of pH. Pediocin AcH exhibited inhibition against several food spoilage bacteria and foodborne pathogens including Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes. It was bactericidal to sensitive cells and acted very rapidly. The bactericidal effect was not produced by either cell lysis or apparent loss of membrane permeability.  相似文献   

12.
The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The properties of the pediocin AcH precursor, prepediocin AcH, have been studied to gain insight into how producer cells may protect themselves from the activity of intracellular prebacteriocins. The native 62-amino-acid precursor and the 44-amino-acid mature species were expressed in Escherichia coli host strains that lack the leader peptide processing enzyme, PapD. Both forms inhibited the growth of the test bacterium Listeria innocua Lin11, indicating that the native precursor is biologically active. The two species also were synthesized in the context of maltose-binding protein chimeric proteins to facilitate the measurement of their relative specific activities. The chimeric form of the precursor was approximately 80% as active as the chimeric mature species. Of relevance to cell protection and pediocin AcH production, it was determined that the precursor is strongly susceptible to inactivation by reducing agents and to degradation by chymotrypsin and endogenous E. coli proteases. Taken together, the results indicate that the activity of prepediocin AcH may have to be controlled prior to secretion to prevent toxicity to the host. Perhaps producer cells avoid membrane damage by maintaining the precursor in a reduced inactive state or by degrading molecules whose secretion is delayed.  相似文献   

15.
A nisin-resistant Lactococcus lactis strain TML01 was isolated from crude milk. A gene with 99% homology to the nisin-resistance gene, nsr, was identified. The food-grade secretion plasmid, pLEB690 (3746 bp), was constructed based on this novel nsr gene enabling primary selection with up to 5 μg nisin/ml. The functionality of pLEB690 as a secretion vector was shown by expressing and secreting the pediocin AcH gene papA in L. lactis. pLEB690 is therefore, a functional food-grade secretion vector potentially useful for the food industry.  相似文献   

16.
Summary A strain of Pediococcus acidilactici CFR K7 isolated from cucumber, produced an antimicrobial peptide which acted against Leuconostoc mesenteroides, selected strains of Lactobacillus spp., Pediococcus spp. and Enterococcus spp. The partially purified bacteriocin had molecular weight of ~4.6 kDa, heat stability in a range of 40–121 °C and was active over a wide range of pH (2.0–9.0). This bacteriocin possessed strong antilisterial activity and was susceptible to proteolytic enzymes. Southern hybridization using the PCR-generated pedA probe established that the gene for the bacteriocin was plasmid-borne as in the case of pediocin PA-1. Nucleotide sequence of the pedAB gene indicated 100% homology to a pediocin AcH/PA-1. Certain bacteriocinogenic strains isolated from naturally fermented cucumber were tested by colony hybridization using the pedA gene probe. Nine out of twenty colonies reacted with the probe indicating their ability to produce the pediocin-like bacteriocin. These nine colonies were further tested for their antimicrobial spectrum, proteolytic inactivation and plasmid profile. It was found that a few of them were active against Bacillus cereus, Micrococcus luteus and Listeria monocytogenes. Their proteolytic inactivation showed that the antimicrobial compound was susceptible to proteinase K. Colony hybridization could thus enable rapid detection of pediocin and pediocin-like bacteriocin producers among a population of bacteriocinogenic strains.  相似文献   

17.
A novel method based on (1) initial microbiological screening and (2) a highly specific PCR is described for selection of strains expressing YGNGV motif-containing pediocin. Initial screening is carried out using spot on the lawn assay for selection of acid-free, hydrogen peroxide (H2O2)-free and secreted heat-stable inhibitory activity producing strains. This is followed by highly specific PCR for amplification of 406-bp fragment using forward primer: 5′-tggccaatatcattggtggt-3′ targeting signal peptide sequence of pediocin structural gene and reverse primer: 5′-ctactaacgcttggctggca-3′ encoding N-terminus of immunity gene. The assay was validated with Pediococcus pentosaceus NCDC273 and Pediococcus acidilactici NCDC252 using (1) digestion of amplified 406-bp fragment with HindIII restriction enzyme-producing two restriction fragments of expected sizes (227 and 179 bp), (2) nucleotide sequencing of 406-bp fragment from both strains found these pediocins identical to pediocin PA-1/AcH and (3) identification of both pediocins as pediocin PA-1 at protein level using RP-HPLC. The assay was used for screening six strains (3 pediococci, 2 lactobacilli and an Enterococcus faecium) producing acid-free, hydrogen peroxide (H2O2)-free and secreted heat-stable inhibitory activity. This resulted in the detection of three new strains (P. pentosaceus NCDC35, E. faecium NCDC124 and Lactobacillus plantarum NCDC20) producing YGNGV motif-containing pediocins.  相似文献   

18.
The Pediocin AcH Precursor Is Biologically Active   总被引:1,自引:0,他引:1       下载免费PDF全文
The properties of the pediocin AcH precursor, prepediocin AcH, have been studied to gain insight into how producer cells may protect themselves from the activity of intracellular prebacteriocins. The native 62-amino-acid precursor and the 44-amino-acid mature species were expressed in Escherichia coli host strains that lack the leader peptide processing enzyme, PapD. Both forms inhibited the growth of the test bacterium Listeria innocua Lin11, indicating that the native precursor is biologically active. The two species also were synthesized in the context of maltose-binding protein chimeric proteins to facilitate the measurement of their relative specific activities. The chimeric form of the precursor was ~80% as active as the chimeric mature species. Of relevance to cell protection and pediocin AcH production, it was determined that the precursor is strongly susceptible to inactivation by reducing agents and to degradation by chymotrypsin and endogenous E. coli proteases. Taken together, the results indicate that the activity of prepediocin AcH may have to be controlled prior to secretion to prevent toxicity to the host. Perhaps producer cells avoid membrane damage by maintaining the precursor in a reduced inactive state or by degrading molecules whose secretion is delayed.  相似文献   

19.
Minimum requirements have been determined for synthesis and secretion of the Pediococcus antimicrobial peptide, pediocin AcH, in Escherichia coli. The functional mature domain of pediocin AcH (Lys+1 to Cys+44) is targeted into the E. coli sec machinery and secreted to the periplasm in active form when fused in frame to the COOH terminus of the secretory protein maltose-binding protein (MBP). The PapC-PapD specialized secretion machinery is not required for secretion of the MBP-pediocin AcH chimeric protein, indicating that in Pediococcus, PapC and PapD probably are required for recognition and processing of the leader peptide rather than for translocation of the mature pediocin AcH domain across the cytoplasmic membrane. The chimeric protein displays bactericidal activity, suggesting that the NH2 terminus of pediocin AcH does not span the phospholipid bilayer in the membrane-interactive form of the molecule. However, the conserved Lys+1-Tyr-Tyr-Gly-Asn-Gly-Val+7-sequence at the NH2 terminus is important because deletion of this sequence abolishes activity. The secreted chimeric protein is released into the culture medium when expressed in a periplasmic leaky E. coli host. The MBP fusion-periplasmic leaky expression system should be generally advantageous for production and screening of the activity of bioactive peptides.  相似文献   

20.
Among 1,962 bacterial isolates from a smear-surface soft cheese (Munster cheese) screened for activity against Listeria monocytogenes, six produced antilisterial compounds other than organic acids. The bacterial strain WHE 92, which displayed the strongest antilisterial effect, was identified at the DNA level as Lactobacillus plantarum. The proteinaceous nature, narrow inhibitory spectrum, and bactericidal mode of action of the antilisterial compound produced by this bacterium suggested that it was a bacteriocin. Purification to homogeneity and sequencing of this bacteriocin showed that it was a 4.6-kDa, 44-amino-acid peptide, the primary structure of which was identical to that of pediocin AcH produced by different Pediococcus acidilactici strains. We report the first case of the same bacteriocin appearing naturally with bacteria of different genera. Whereas the production of pediocin AcH from P. acidilactici H was considerably reduced when the final pH of the medium exceeded 5.0, no reduction in the production of pediocin AcH from L. plantarum WHE 92 was observed when the pH of the medium was up to 6.0. This fact is important from an industrial angle. As the pH of dairy products is often higher than 5.0, L. plantarum WHE 92, which develops particularly well in cheeses, could constitute an effective means of biological combat against L. monocytogenes in this type of foodstuff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号