首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Gaudin  M Safar  J L Cuche 《Life sciences》1990,47(22):2003-2008
Restraint stress is known to induce gastric ulcers in rats. Peripheral sympathetic activity and catecholamines are involved in the pathogenesis of these gastric ulcers. The aim of the present study was to evaluate the effects of restraint on mucosal and muscle catecholamine concentrations in the glandular stomach of rats. In unrestrained rats, noradrenaline concentration was higher in the muscle than in the mucosa of the glandular stomach (629 +/- 106 vs 18 +/- 3 pg/mg and 217 +/- 37 vs 18 +/- 8 pg/mg, respectively in the corpus and the antrum, p less than 0.01). This can be explained by the existence of an abundant noradrenergic innervation in the muscle layer. After 20 hours of restraint, adrenaline and noradrenaline concentrations were significantly decreased in adrenals, in comparison with unrestrained animals (255 +/- 53 vs 638 +/- 160 ng/mg and 113 +/- 17 vs 198 +/- 37 ng/mg, respectively for adrenaline and noradrenaline, p less than 0.05). In the glandular stomach, noradrenaline and adrenaline concentrations in restrained rats were not significantly different from those in unrestrained rats. However, adrenaline concentrations in the muscle of restrained rats were higher than in the mucosa. Moreover, restraint induced a significant decrease in dopamine concentration in the antral mucosa (from 100 +/- 12 pg/mg in unrestrained rats to 15 +/- 5 pg/mg in restrained rats), suggesting that a depletion in dopamine in the antral mucosa could be one of the pathogenetic factors involved in antral gastric stress-induced ulcers in rats.  相似文献   

2.
1. The catecholamines dopamine, epinephrine and norepinephrine were detected in alumina extracts of Limulus midgut tissue using high performance liquid chromatography with electrochemical detection. Moderate levels of norepinephrine (28.2 +/- 2.1 ng/g) and dopamine (24.0 +/- 5.2 ng/g) were detected in the midgut, while epinephrine levels (7.4 +/- 0.9 ng/g) were less. Catecholamines were present in all regions along the longitudinal axis of the midgut, and norepinephrine and dopamine levels were highest in posterior regions. 2. Catecholamines decreased muscle tonus and inhibited spontaneous contractions of the Limulus midgut. Dopamine typically decreased spontaneous midgut activity at doses of 10(-8) M or greater, and produced inhibitory actions on all regions of the Limulus midgut. In some preparations epinephrine and norepinephrine elicited a secondary rhythmicity. The actions of dopamine opposed the excitatory effects produced by either proctolin or octopamine. 3. Catecholamines significantly elevated levels of cyclic AMP in Limulus midgut muscle rings. Dopamine (10(-5) M) increased cyclic AMP with a time course consistent with its physiological effects. Forskolin and several methyl xanthines increased Limulus midgut cyclic AMP levels and mimicked the inhibitory effects of dopamine on the isolated midgut preparation. Cyclic nucleotide analogues also produced dopamine-like effects on the isolated midgut preparation. Inhibition of cyclic nucleotide phosphodiesterase prior to addition of dopamine enhanced the effect of this amine to decrease baseline muscle tension. 4. The inhibitory effects of 10(-5) M dopamine on the midgut persisted in solutions of zero sodium and in the presence of tetrodotoxin. Zero calcium solutions gradually reduced spontaneous midgut activity and the effects of dopamine. Calcium channel blockers did not prohibit dopamine-induced relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Tyrosine hydroxylase (TH) mRNA and activity and concentrations of 3,4-dihydroxyphenylalanine (DOPA) and catecholamines were examined as markers of sympathetic innervation and catecholamine synthesis in peripheral tissues of sympathectomized and intact rats. Chemical sympathectomy with 6-hydroxydopamine (6-OHDA) markedly decreased norepinephrine and to a generally lesser extent TH activities and dopamine in most peripheral tissues (stomach, lung, testis, duodenum, pancreas, salivary gland, spleen, heart, kidney, thymus). Superior cervical ganglia, adrenals and descending aorta were unaffected and vas deferens showed a large 92% decrease in norepinephrine, but only a small 38% decrease in TH activity after 6-OHDA. Presence of chromaffin cells or neuronal cell bodies in these latter tissues, indicated by consistent expression of TH mRNA, explained the relative resistance of these tissues to 6-OHDA. Stomach also showed consistent expression of TH mRNA before, but not after 6-OHDA, suggesting that catecholamine synthesizing cells in gastric tissue are sensitive to the toxic effects of 6-OHDA. Tissue concentrations of DOPA were mainly unaffected by 6-OHDA, indicating that much of the DOPA in peripheral tissues is synthesized independently of local TH or sympathetic innervation. The differential effects of chemical sympathectomy on tissue catecholamines, DOPA, TH mRNA and TH activity demonstrate that these variables are not simple markers of sympathetic innervation or catecholamine synthesis. Other factors, including presence of neuronal cell bodies, parenchymal chromaffin cells, non-neuronal sites of catecholamine synthesis and alternative sources of tissue DOPA, must also be considered when tissue catecholamines, DOPA and TH are examined as markers of sympathetic innervation and local catecholamine synthesis.  相似文献   

4.
Abstract: Male albino rats were exposed to manganese through drinking solution containing MnCl2·4H2O (1 mg/ml) in water. The contents of catecholamines, homovanillic acid, manganese and the activity of monoamine oxidase (MAO) were measured in the corpus striatum at different time intervals up to a period of 360 days. The contents of tyrosine in the corpus striatum and serum were also estimated. Manganese treatment produced an initial increase in the contents of dopamine (DA), norepinephrine (NE), homovanillic acid (H VA) and tyrosine in the corpus striatum. This was followed by a period when concentrations were almost normal (dopamine from 120 to 240 days, norepinephrine at 180 and 240 days and homovanillic acid at 240 days after manganese administration). Thereafter the contents of these substrates declined significantly at 300 and 360 days of treatment. However, these alterations were not correlated with the concentrations of manganese in this region, which gradually increased up to 240 days, and thereafter remained constant until the termination of the experiment. The underlying biochemical mechanisms of manganese-induced sequential changes in the striatal contents of catecholamines have been discussed in relation to the development of psychiatric and neurological phases of manganese poisoning.  相似文献   

5.
Recent reports about tyrosine hydroxylase and alpha 1-adrenoceptors in epileptic foci have suggested increased regional catecholaminergic activity, which may serve a compensatory, inhibitory role. We measured levels of catechols, including the precursor 3,4-dihydroxyphenylalanine (DOPA) and the catecholamines dopamine (DA) and norepinephrine (NE), in surgically removed foci identified by electrocorticography and in nonepileptogenic sites from 23 patients with intractable temporal lobe epilepsy. The following values (mean +/- 1 SD) were obtained: DOPA = 142 +/- 60 ng/g of protein in the focus vs. 115 +/- 39 ng/g in the nonfocus (p less than 0.01); DA = 168 +/- 85 vs. 106 +/- 54 ng/g (p less than 0.001); and NE = 267 +/- 117 vs. 181 +/- 80 ng/g (p less than 0.001). The results are consistent with increased catecholaminergic activity in epileptic foci.  相似文献   

6.
K Shichijo  M Ito  I Sekine 《Life sciences》1991,49(26):2023-2029
The mechanism of low susceptibility to stress in gastric lesion formation in spontaneously hypertensive rats (SHR) was investigated focusing on the sympathetic and parasympathetic nervous systems. In the gastric tissues of SHR, norepinephrine (NE) and dopamine (DA) contents were higher, while acetylcholine content and choline acetyltransferase activity were lower than those of Wistar-Kyoto rats (WKY). Water-immersion restraint induced gastric lesions frequently in WKY (ulcer indices : 52 +/- 7mm2) but less frequently in SHR (ulcer indices : 3 +/- 1mm2). Although NE content decreased in both SHR and WKY as a result of water-immersion restraint, it remained higher in SHR than in WKY. ACh content decreased by the procedure in WKY but not in SHR. DA content was increased by the procedure in all gastric regions of SHR. The gastric lesions induced in SHR were aggravated by pretreatment with 6-hydroxydopamine, an agent for chemical sympathectomy, following decreases of NE and DA contents. These results indicate that the relative sympathetic hyperfunction, parasympathetic hypofunction and dopaminergic mechanism in the stomach contribute to the prevention of gastric lesion formation in SHR.  相似文献   

7.
This study reports on the major source of circulating norepinephrine that is known to increase, progressively, during sustained hypoglycemia induced by intravenous insulin administration. Plasma concentrations of epinephrine, norepinephrine, and dopamine were simultaneously determined for adrenal venous and aortic blood in dogs anesthetized with sodium pentobarbital. The model used allowed us to perform a functional adrenalectomy (ADRX), while continuously monitoring the adrenal medullary secretory function. Under basal conditions, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine were 0.169 +/- 0.074, 0.067 +/- 0.023, and 0.011 +/- 0.003, respectively. Plasma concentrations (ng/mL) of aortic epinephrine, norepinephrine, and dopamine were 0.132 +/- 0.047, 0.268 +/- 0.034, and 0.034 +/- 0.009. Following insulin injection (0.15 IU/kg, i.v.), the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased gradually (p less than 0.05), reaching the values of 0.918 +/- 0.200, 0.365 +/- 0.058, and 0.034 +/- 0.007 30 min after insulin administration. Similarly, aortic epinephrine, norepinephrine, and dopamine concentrations (ng/mL) increased significantly (p less than 0.05) to 0.702 +/- 0.144, 0.526 +/- 0.093, and 0.066 +/- 0.024. The aortic glucose concentration (mg/dL) was diminished from 81.8 +/- 4.1 to 36.9 +/- 3.4 (p less than 0.01). After taking the blood sample at 30 min following insulin administration, ADRX was immediately performed. Five minutes after the onset of ADRX, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased further to 1.707 +/- 0.374 (p less than 0.05), 0.668 +/- 0.139 (p less than 0.05), and 0.052 +/- 0.017.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The extent to which endogenous, extracellular adenosine mediates increased coronary flow in crystalloid-perfused, isovolumic rat hearts stimulated with either norepinephrine or isoproterenol was examined. When infused into the coronary circulation, norepinephrine (1 x 10(-7) M) rapidly increased left ventricular developed pressure (LVDP) from 81 +/- 6 to 235 +/- 13 mmHg (1 mmHg = 133.3 Pa) and coronary flow from 12.7 +/- 0.8 to 18.4 +/- 0.7 mL.min-1.g-1. The presence of either adenosine deaminase (2 U.mL-1) or the adenosine receptor antagonist, 8-phenyltheophylline (5 x 10(-6) M) in the perfusate of norepinephrine-stimulated hearts augmented the increase in LVDP and +/- dP/dtmax by 10-20% but reduced the increase in coronary flow by 34%. Doubling the rate of adenosine deaminase infusion, or infusing the enzyme and 8-phenyltheophylline together did not alter their inhibitory effectiveness. Similar results were observed with hearts stimulated with isoproterenol (5 x 10(-8) M). These data show that about a third of the vasodilation that results from the metabolic stimulation of rat heart by catecholamines is due to the receptor-mediated action of extracellular adenosine.  相似文献   

9.
To examine the responses of the sympatho-adrenal system to reduced oxygen supply we studied plasma and tissue concentrations of catecholamines during normoxemia, hypoxemia, and asphyxia in 22 fetal guinea pigs near term. Fetal blood was obtained by cardiopuncture in utero under ketamine/xylazine-anesthesia. Catecholamines were determined in plasma and tissue of 15 organs and 14 brain parts by HPLC-ECD. During normoxemia (SO2 54 +/- 4 (SE) %, pH 7.36 +/- 0.02, n = 5) plasma catecholamine levels were low (norepinephrine 447 +/- 53, epinephrine 42 +/- 12, dopamine 44 +/- 6 pg/ml). During hypoxemia (SO2 27 +/- 3%, pH 7.32 +/- 0.01, n = 6) and asphyxia (SO2 24 +/- 2%, pH 7.23 +/- 0.02, n = 11) tissue catecholamine concentrations changed with changing blood gases and with increasing plasma catecholamines. Norepinephrine concentrations increased in both skin and lung and decreased in liver, pancreas, and scalp; those of epinephrine increased in the heart, lung liver, and scalp and decreased in the adrenal. There were only minor changes in brain catecholamine concentrations except for a 50% reduction in dopamine in the caudate nucleus. Concentrations of dopamine catabolite 3,4-dihydroxyphenylacetic acid decreased in many brain parts, suggesting that cerebral catecholamine metabolism was affected by hypoxemia and asphyxia. We conclude that the sympatho-adrenal system of fetal guinea pigs near term is mature and that its stimulation by reduced fetal oxygen supply leads to changes in both plasma and tissue catecholamine concentrations.  相似文献   

10.
The effects of subcutaneous injection of L-beta-3,4-dihydroxyphenylalamine (L-DOPA) on the concentrations of the catecholamines and catecholamine sulfates in the central and peripheral nervous systems of the rat were studied. The results showed that free 3,4-dihydroxyphenylethylamine (DA, dopamine) increased rapidly and markedly in the hypothalamus and striatum after L-DOPA but DA sulfate did not change. Increased concentrations of DA sulfate were detected in the CSF and in the plasma, where it reached a concentration of 130.8 +/- 12.8 ng/ml at 2 h, seven times the level of free DA (19.1 +/- 2.9 ng/ml). In the kidney the ratio of DA sulfate to free DA was reversed in favor of free DA. Urine samples of L-DOPA-treated rats showed a higher increase of free DA than DA sulfate, but free norepinephrine (NE) and NE sulfate remained unchanged. Concentrations of free DA and free NE in the adrenal glands of L-DOPA-treated rats showed no change. Adrenal DA sulfate and NE sulfate were not detectable in the control and L-DOPA-treated rats, suggesting that the adrenal glands lack the capacity to take up or store catecholamines and their sulfate counterparts from the plasma.  相似文献   

11.
To determine if catecholamines were present in bovine luteal tissue, corpora lutea (CL) were obtained during the mid-luteal phase (Days 10-12) and the concentration of dopamine (DA) and norepinephrine (NE) was determined by high-performance liquid chromatography. Both DA and NE were detected in luteal tissue at mean concentrations of 41.9 +/- 5.73 and 10.2 +/- 2.51 ng/g for DA and NE, respectively. These concentrations represented a luteal content of 306.6 +/- 66.88 ng/CL for DA and 70.5 +/- 16.88 ng/CL for NE. In vitro, DA at concentrations of 1.0 mM to 0.01 mM stimulated the production of progesterone (P4, p less than 0.05). The response to DA was inhibited by propranolol (a beta-adrenergic receptor antagonist, p less than 0.05) but not by phentolamine, phenoxybenzamine (alpha-adrenergic receptor antagonists), or haloperidol (a DA receptor antagonist, p greater than 0.05). Neither L-tyrosine nor L-dopa altered P4 production (p greater than 0.05). Inhibition of DA beta-hydroxylase, the enzyme that catalyzes the conversion of DA to NE by FLA-63 blocked the DA-induced increases in luteal P4 production (p less than 0.05). These results demonstrate the existence of DA and NE in bovine luteal tissue and indicate that exogenous DA can be converted to NE in luteal tissue. The results support a physiological role for catecholamines in the stimulation of bovine luteal function.  相似文献   

12.
Catecholamines are pivotal signal molecules in the neuroendocrine-immune regulatory network, and implicated in the modulation of immune response. In the present study, the activities of some immune-related enzymes and the concentration of catecholamines were determined in circulating haemolymph of scallops Chlamys farreri after bacteria Vibrio anguillarum challenge. The activities of superoxide dismutase (SOD), catalase (CAT) and lysozyme (LYZ) increased significantly and reached 610 U mg(-1) at 12 h, 37.6 U mg(-1) at 6 h and 261.5 U mg(-1) at 6 h after bacteria challenge, respectively. The concentration of norepinephrine, epinephrine and dopamine also increased significantly and reached 114.9 ng mL(-1) at 12 h, 86.9 ng mL(-1) at 24 h and 480.4 pg mL(-1) at 12 h after bacteria challenge, respectively. Meanwhile, the activities of these immune-related enzymes in haemolymph were monitored in those scallops which were challenged by bacteria V. anguillarum and stimulated simultaneously with norepinephrine, epinephrine and adrenoceptor antagonist. The injection of norepinephrine and epinephrine repressed significantly the induction of bacteria challenge on the activities of immune-related enzymes, and they were reduced to about half of that in the control groups. The blocking of α and β-adrenoceptor by antagonist only repressed the increase of CAT and LYZ activities significantly, while no significant effect was observed on the increase of SOD activities. The collective results indicated that scallop catecholaminergic neuroendocrine system could be activated by bacteria challenge to release catecholamines after the immune response had been triggered, and the immune response against bacteria challenge could been negatively modulated by norepinephrine, epinephrine, and adrenoceptor antagonist. This information is helpful to further understand the immunomodulation of catecholamines in scallops.  相似文献   

13.
The concentration and molecular nature of cholecystokinin-like immunoreactivity (CCK-LI) in extracts of porcine intestinal mucosa were determined using sequence-specific radioimmunoassays. Highest CCK concentrations were measured in duodenal mucosa (258 +/- 60 pmol/g in the distal duodenum) followed by jejunal mucosa (204 +/- 36 pmol/g in the proximal jejunum) and pylorus (51 +/- 9 pmol/g). All other gastrointestinal regions proximal to the pylorus and distal to the jejunum contained less than 20 pmol/g. Pancreas contained less than 1 pmol/g. Gel chromatography in 6 M urea revealed four immunoreactive forms and this was confirmed by reverse-phase high-pressure liquid chromatography (HPLC). The predominant molecular form in acid extracts of duodenal mucosa resembled CCK-33 although high concentrations of the larger CCK form ('CCK-58') and of the form intermediate in size between CCK-33 and CCK-8 were measured. A molecular form resembling CCK-8 was the principal form in neutral extracts of the duodenum.  相似文献   

14.
Plasma free catecholamines rise during exercise, but sulfoconjugated catecholamines reportedly fall. This study examined the relationship between exercise intensity and circulating levels of sulfoconjugated norepinephrine, epinephrine, and dopamine. Seven exercise-trained men biked at approximately 30, 60, and 90% of their individual maximal oxygen consumption (VO2max) for 8 min. The 90% VO2max period resulted in significantly increased plasma free norepinephrine (rest, 219 +/- 85; exercise, 2,738 +/- 1,149 pg/ml; P less than or equal to 0.01) and epinephrine (rest, 49 +/- 49; exercise, 555 +/- 516 pg/ml; P less than or equal to 0.05). These changes were accompanied by consistent increases in sulfoconjugated norepinephrine at both the 60% (rest, 852 +/- 292; exercise, 1,431 +/- 639; P less than or equal to 0.05) and 90% (rest, 859 +/- 311; exercise, 2,223 +/- 1,015; P less than or equal to 0.05) VO2max periods. Plasma sulfoconjugated epinephrine and dopamine displayed erratic changes at the three exercise intensities. These findings suggest that sulfoconjugated norepinephrine rises during high-intensity exercise.  相似文献   

15.
1. Earlier reports from this and other laboratories have indicated that wide variations exist in estimates of the concentrations of norepinephrine in the brain and heart of the snail Helix aspersa. This is a report on investigations of norepinephrine concentrations in Helix aspersa tissues using high-performance liquid chromatography with electrochemical detection. In addition, the effects of treatment with some amino acid precursors or enzyme inhibitors on the concentrations of norepinephrine, dopamine, 5-hydroxytryptamine, and some of their metabolites were investigated. 2. The levels of norepinephrine in the brain were low (46 ng/g) in comparison to dopamine (2.1) micrograms/g) and 5-hydroxytryptamine (2.6 micrograms/g). Epinephrine was not observed in either snail heart of snail nervous tissue. 3. Administration of L-3,4-dihydroxyphenylalanine resulted in elevated snail brain dopamine, while 3,4-dihydroxyphenylserine treatment increased norepinephrine. Treatment with blockers of tyrosine hydroxylase and aromatic-L-amino acid decarboxylase reduced dopamine concentrations without affecting 5-hydroxytryptamine. 4. The dopamine metabolite 3,4-dihydroxyphenylacetic acid was observed only after administration of L-3,4-dihydroxyphenylalanine or dopamine and then only in very small amounts. At no time was the dopamine metabolite homovanillic acid or the 5-hydroxytryptamine metabolite 5-hydroxyindoleacetic acid observed in brain, heart, or whole-body extracts of the snail. 5. Incubation of nervous tissue with either dopamine or 5-hydroxytryptamine resulted in the production of electrochemically active metabolites which were identified by oxidation characteristics and cochromatography with synthesized standards as the gamma-glutamyl conjugates of the amines. Treatment of snails with 5-hydroxytryptamine or dopamine also resulted in the production of gamma-glutamyl conjugates. 6. The present experiments show that great care must be exercised when measuring monoamines and their metabolites in gastropod tissues by high-performance liquid chromatography with electrochemical detection.  相似文献   

16.
Urinary excretion of dopamine, norepinephrine and epinephrine was measured in a group of adult men and women of comparable age during recumbency and then during stimulation by upright posture. Urinary norepinephrine was found to be significantly higher in women (30.3 +/- 4.4 ng/min/m2 B.S.) than in men (18.3 +/- 2.7 ng/min/m2 B.S.) during recumbency; there was no significant sex difference in dopamine and epinephrine excretion. There was no apparent trend indicating a difference in urinary catecholamine excretion during the follicular or luteal phase of the menstrual cycle. In response to upright posture, there was a significant decrease in the urinary dopamine-norepinephrine ratio in both sexes; the magnitude of the decrease was, however, significantly higher in men (-9.9 +/- 3.0) than in women (-2.05 +/- 0.72). The mechanisms of the sex differences in urinary catecholamine excretion are unknown. Clinical studies involving catecholamines have to take these sex differences into account.  相似文献   

17.
M Ali  J W McDonald 《Prostaglandins》1980,20(2):245-254
Bovine gastric mucosal and muscle microsomes synthesize prostaglandins and thromboxane b/ (TXB2) from aratchidonic acid (AA). TXB2 and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) were the majro products synthesized by pylorus, body, and cardiac region of the gastric mucosa. Gastric muscle mainly synthesized 6-keto-PGF1 alpha. TXB2 and 6-keto-PGF1 alpha synthesis occurs at an appreciable rate from endogenous precursors but more rapidly with added arachidonate. Prostaglandins E2, F2 alpha and D2 were synthesized in smaller amounts under the conditions studied.  相似文献   

18.
Glucagon-like peptide-1 (GLP-1) modulates glucose levels following a meal, including by inhibition of gastric emptying and intestinal transport. Intra-arterial injection of GLP-1 into the gastric corpus, antrum, or pylorus of anesthetized dogs had no effect on the contractile activity of the resting or neurally activated stomach. GLP-1 injected intra-arterially inhibited intestinal segments when activated by enteric nerve stimulation but not by acetylcholine. Isolated ileum segments were perfused intra-arterially, instrumented with strain gauges to record circular muscle activity and with subserosal electrodes to stimulate enteric nerves. GLP-1 caused concentration-dependent inhibition of nerve-stimulated phasic but not tonic activity. This was absent during TTX-induced activity and partly prevented by N(G)-nitro-L-arginine. Exendin-(9-39), the GLP-1 antagonist, had no intrinsic activity and did not affect the actions of GLP-1. Capsaicin mimicked the effects of GLP-1 and may have reduced the effect of subsequent GLP-1. GLP-1 may mediate paracrine action on afferent nerves in the canine ileal mucosa using an unusual receptor.  相似文献   

19.
We previously observed that administration of tyrosine to rats or humans elevated urinary dopamine, norepinephrine and epinephrine levels. The present studies examine the effects on these urinary catecholamines of varying the ratio of protein to carbohydrate in the diets.Rats consumed diets containing 0, 18 or 40% protein (76, 58 and 36% carbohydrate respectively) for 8 days. The stress of consuming the protein-free food was associated with a 16% weight reduction, and with significantly lower serum, heart and brain tyrosine levels than those noted in rats eating the 18 or 40% protein diets. Absence of protein from the diet also decreased urinary levels of dopamine and DOPA but increased urinary norepinephrine and epinephrine, probably by increasing sympathoadrenal discharge; it also increased the excretion of DOPA in animals pretreated with carbidopa, a DOPA decarboxylase inhibitor. Carbidopa administration decreased urinary dopamine, norepinephrine and epinephrine as expected; however, among carbidopa-treated rats urinary norepinephrine and epinephrine concentrations were highest for animals consuming the protein-free diet, again suggesting enhanced release of stored catecholamines from sympathoadrenal cells. The changes in urinary catecholamines observed in animals eating the protein-free diet were similar to those seen in rats fasted for 5 days: dopamine levels fell sharply while norepinephrine and epinephrine increased.These data indicate that the effects of varying dietary protein and carbohydrate contents on dopamine secretion from peripheral structures differ from its effects on structures secreting the other two catecholamines. Protein consumption increases dopamine synthesis and release probably by making more of its precursor, tyrosine, available to peripheral dopamine-producing cells; it decreases urinary norepinephrine and epinephrine compared with that seen in protein-deprived animals, probably by diminishing the firing of sympathetic neurons and adrenal chromaffin cells.  相似文献   

20.
The antihypertensive effect of alpha-methyldopa (MD) is believed to be critically dependent on its ability to deplete endogenous catecholamines or cause the synthesis of false neurotransmitters. We used liquid chromatography with electrochemical detection (LCEC) and negative chemical ionization gas chromatography-mass spectrometry (GC-MS) for quantitation of catecholamines and MD metabolites in rat. MD intraperitoneally (100 mg/kg q12 hr X 12 days), significantly increased alpha-methylnorepinephrine (MNE) in brain (1.02 +/- 0.33 micrograms/g), heart (1.67 +/- 0.57 micrograms/g) and adrenal glands (114.93 +/- 50.47 micrograms/g) Endogenous norepinephrine (NE), epinephrine (E) and dopamine (DA) were reduced. ME levels were 2.19 +/- 0.44 micrograms/g (n = 6) in the adrenal gland but only 99 +/- 26 pg/g (n = 3) in the brainstem. MD-induced endogenous brainstem NE depletion was more than compensated by MNE production, but brainstem E depletion was not compensated for by a stoichiometric production of brainstem ME. We conclude (1) although ME is a metabolite of MD, it is present in extremely low concentrations in brainstem and (2) central epinephrine-containing neurons are depleted of neurotransmitter by MD therapy. If this selective epinephrine depletion occurs in the bulbospinal tract neurons responsible for maintaining sympathetic tone, then this effect could contribute to the antihypertensive effect of MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号