首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous studies have indicated that transfection of NIH3T3 cells with the ras oncogene induced modifications of the terminal glycosylation of N-linked glycans which appeared in the early stage after transfection. These changes affected especially the terminal part of N-linked glycans which is substituted with alpha-1,3-Gal residues in NIH3T3 and with Neu5Ac residues in the ras-transformed counterpart. We have transformed NIH3T3 cells with the human c-Ha-ras oncogene, evaluated tumorigenicity and metastatic capacity in vivo and compared alpha-1,3-galactosyltransferase, alpha-2,3- and alpha-2,6-sialyltransferases activities. By using different specific acceptors, we detected the enhancement of sialic acid transfer in transformed cells while the activity of alpha-1,3-galactosyltransferase remained unchanged. We showed that the higher sialyltransferase activity was due to the increase of beta-galactoside alpha-2,6-sialyltransferase in ras-transfectant although alpha-2,3-sialyltransferase was weakly expressed in these cells. On the basis of binding of different lectins, we correlated these observations with changes of protein glycosylation. We concluded that altered glycosylation of ras-transformed NIH3T3 is the result of a competitive effect of the enzymes acting for terminal glycosylation of N-linked glycans and the reflection of the higher expression of alpha-2,6-sialyltransferase.  相似文献   

2.
Following activation in the periphery, murine CD8+ T cells exhibit a characteristic increased binding of peanut agglutinin (PNA), reflecting an increased expression of hyposialylated O-linked glycans (Galbeta1-3GalNAcalpha-O-Thr/Ser) on the cell surface. In this report, we show that the majority of the PNA receptors expressed on activated CD8+ T cells are carried by CD45. Other glycoproteins (e.g. CD8) and the glycolipid asialo-GM1 also carry PNA receptors, although to a much lesser extent. Analysis of enzymes involved in the sialylation/de-sialylation pathways showed that generation of PNA receptors in activated CD8+ T cells is not due to up-regulation of endogenous sialidases. Instead, our results indicate that the PNA(high) phenotype results from de novo synthesis of CD45 carrying reduced sialylated core 1 O-glycans.  相似文献   

3.
We have isolated mutants in the fission yeast Schizosaccharomyces pombe that are defective in protein glycosylation. A collection of osmotically sensitive mutants was prepared and screened for glycosylation defects using lectin staining as an assay. Mutants singly defective in four glycoprotein synthesis genes (gps1-4) were isolated, all of which bind less galactose-specific lectin. Acid phosphatase and other glycoproteins from the gps mutants have increased electrophoretic mobility, suggesting that these mutants make glycans of reduced size. N-linked glycan analysis revealed that terminal oligosaccharide modification is defective in the gps1 and gps2 mutants. Both mutants synthesize the Man9GlcNAc2 core glycan but have reduced amounts of larger structures. Modified core glycans from gps1 cells have normal amounts of galactose (Gal) residues, but reduced amounts of Man, consistent with a defect in a Golgi mannosyltransferase in this mutant. In contrast, N-linked oligosaccharides from gps2 mutants have much less Gal than wild type, because of reduced levels of the Gal donor, UDP-Gal. This reduction is caused by decreased activity of UDP-glucose 4-epimerase, which synthesizes UDP-Gal. Neither the gps1 or gps2 mutations are lethal, although the cells grow at reduced rates. These findings suggest that S. pombe cells can survive with incompletely glycosylated cell wall glycoproteins. In particular, these results suggest that Gal, which comprises approximately 30% by weight of cell wall glycoprotein glycans, is not crucial for cell growth or survival.  相似文献   

4.
《The Journal of cell biology》1996,132(6):1199-1208
CD44-mediated cell adhesion to hyaluronate is controlled by mechanisms which are poorly understood. In the present work we examine the role of N-linked glycosylation and Ser-Gly motifs in regulating CD44- hyaluronate interaction. Our results show that treatment of a panel of human cell lines which constitutively express CD44 with the inhibitor of N-linked glycosylation tunicamycin results in the loss of attachment of these cells to hyaluronate-coated substrate. In contrast, treatment of the same cells with deoxymannojirimycin, which inhibits the conversion of high mannose oligosaccharides to complex N-linked carbohydrates, results in either no change or an increase in CD44- mediated adhesion to hyaluronate, suggesting that complex N-linked oligosaccharides may not be required for and may even inhibit CD44-HA interaction. Using human melanoma cells stably transfected with CD44 N- linked glycosylation site-specific mutants, we show that integrity of five potential N-linked glycosylation sites within the hyaluronate recognition domain of CD44 is critical for hyaluronate binding. Mutation of any one of these potential N-linked glycosylation sites abrogates CD44-mediated melanoma cell attachment to hyaluronate-coated surfaces, suggesting that all five sites are necessary to maintain the HA-recognition domain in the appropriate conformation. We also demonstrate that mutation of serine residues which constitute the four Ser-Gly motifs in the membrane proximal domain, and provide potential sites for glycosaminoglycan side chain attachment, impairs hyaluronate binding. Taken together, these observations indicate that changes in glycosylation of CD44 can have profound effects on its interaction with hyaluronic acid and suggest that glycosylation may provide an important regulatory mechanism of CD44 function.  相似文献   

5.
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 +/- 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 +/- 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed.  相似文献   

6.
Two distinct T-cell glycoforms of CD43 result from differentialglycosylation of a single gene product in vivo. The 115 kDaglycoform carries mainly tetrasaccharides and is a pan T-cellmarker, whereas the 130 kDa glycoform carries mainly hexasaccharidesand is associated with T-cell activation. CD43 has been shownto play a role both in enhancing and inhibiting cell adhesion;however, the function of the individual glycoforms is unknown.We have examined the distribution and regulation of the CD43glycoforms in a murine model of acute graft-versus-host disease(GVHD) using monoclonal antibodies (mAbs) S7 and 1B11 specificfor the 115 and 130 kDa CD43 glycoforms, respectively. An increasein T-lymphocyte CD43 130 kDa expression occurred during GVHDfrom day 4 onwards and coincided with splenomegaly and upregulationof the ß1-6GlcNAc transferase (C2GnT), the key enzymeresponsible for the addition of complex O-glycan branching toCD43. When T-lymphocyte subsets were examined for CD43 expression,we found that in GVHD, both CD43 glycoforms were upregulatedon CD4+ T cells. However, in CD8+ T cells, CD43 115 kDa wasdownregulated while CD43 130 kDa was dramatically upregulated,such that two distinct CD8+1B11+ T-cell subsets were observed.These data demonstrate differential expression of the CD43 glycoformsin both resting and activated CD4+ and CD8+ T cells, and suggestthat glycosylation differences between the CD43 glycoforms mayreflect participation in the different functions of these T-cellsubsets in immune disorders in vivo. activation CD43 glycosyltransferases graft-versushost disease T lymphocytes  相似文献   

7.
The Xenopus laevis egg vitelline envelope is composed of five glycoproteins (ZPA, ZPB, ZPC, ZPD, and ZPX). As shown previously, ZPC is the primary ligand for sperm binding to the egg envelope, and this binding involves the oligosaccharide moieties of the glycoprotein (Biol. Reprod., 62:766-774, 2000). To understand the molecular mechanism of sperm-egg envelope binding, we characterized the N-linked glycans of the vitelline envelope (VE) glycoproteins. The N-linked glycans of the VE were composed predominantly of a heterogeneous mixture of high-mannose (5-9) and neutral, complex oligosaccharides primarily derived from ZPC (the dominant glycoprotein). However, the ZPA N-linked glycans were composed of acidic-complex and high-mannose oligosaccharides, ZPX had only high-mannose oligosaccharides, and ZPB lacked N-linked oligosaccharides. The consensus sequence for N-linked glycosylation at the evolutionarily conserved residue N113 of the ZPC protein sequence was glycosylated solely with high-mannose oligosaccharides. This conserved glycosylation site may be of importance to the three-dimensional structure of the ZPC glycoproteins. One of the complex oligosaccharides of ZPC possessed terminal beta-N-acetyl-glucosamine residues. The same ZPC oligosaccharide species isolated from the activated egg envelopes lacked terminal beta-N-acetyl-glucosamine residues. We previously showed that the cortical granules contain beta-N-acetyl-glucosaminidase (J. Exp. Zool., 235:335-340, 1985). We propose that an alteration in the oligosaccharide structure of ZPC by glucosaminidase released from the cortical granule reaction is responsible for the loss of sperm binding ligand activity at fertilization.  相似文献   

8.
CD40-CD154 (CD40 ligand) interactions are essential for the development of protective immunity. Previous studies have described the CD40 binding site as a shallow groove formed between two monomers of CD154. However, these studies have not examined the structure or biological function of the carbohydrate on CD154. Human CD154 contains a single N-linked glycosylation site at asparagine 240. We have characterized the interactions between CD40 and soluble (s) CD154 in which sCD154 contains different types of carbohydrates. Detailed carbohydrate analysis revealed high-mannose structures on sCD154 purified from Pichia pastoris, whereas CD154 purified from Chinese hamster ovary E1A contained heterogeneous populations of complex carbohydrates. sCD154 purified from either system was trimeric, it bound to CD40 with similar affinities of 10-30 nM, and it functionally induced CD69 and CD95 expression on primary B cells. Together, these results indicate that the presence of varied types of N-linked glycans on asparagine 240 of CD154 does not play a significant role in the CD40-CD154 interactions.  相似文献   

9.
The role of carbohydrate modifications of glycoproteins in leukocyte trafficking is well established, but less is known concerning how glycans influence pathogenesis of inflammation. We previously identified a carboxylate modification of N-linked glycans that is recognized by S100A8, S100A9, and S100A12. The glycans are expressed on macrophages and dendritic cells of normal colonic lamina propria, and in inflammatory infiltrates in colon tissues from Crohn's disease patients. We assessed the contribution of these glycans to the development of colitis induced by CD4(+)CD45RB(high) T cell transfer to Rag1(-/-) mice. Administration of an anti-carboxylate glycan Ab markedly reduced clinical and histological disease in preventive and early therapeutic protocols. Ab treatment reduced accumulation of CD4(+) T cells in colon. This was accompanied by reduction in inflammatory cells, reduced expression of proinflammatory cytokines and of S100A8, S100A9, and receptor for advanced glycation end products. In vitro, the Ab inhibited expression of LPS-elicited cytokines and induced apoptosis of activated macrophages. It specifically blocked activation of NF-kappaB p65 in lamina propria cells of colitic mice and in activated macrophages. These results indicate that carboxylate-glycan-dependent pathways contribute to the early onset of colitis.  相似文献   

10.
C33 Ag was originally identified by mAb inhibitory to syncytium formation induced by human T cell leukemia virus type 1. The Ag was shown to be a highly heterogeneous glycoprotein consisting of a 28-kDa protein and N-linked oligosaccharides ranging from 10 to 50 kDa. In the present study, cDNA clones were isolated from a human T cell cDNA expression library in Escherichia coli by using mAb C33. The identity of cDNA was verified by immunostaining and immunoprecipitation of transfected NIH3T3 cells with mAb. The cDNA contained an open reading frame of a 267-amino acid sequence which was a type III integral membrane protein of 29.6 kDa with four putative transmembrane domains and three putative N-glycosylation sites. The C33 gene was found to belong to a newly defined family of genes for membrane proteins, such as CD9, CD37, CD53, CD63, and TAPA-1, and was identical to R2, a cDNA recently isolated because of its strong up-regulation after T cell activation. Availability of mAb for C33 Ag enabled us to define its distribution in human leukocytes. C33 Ag was expressed in CD4+ T cells, CD19+ B cells, CD14+ monocytes, and CD16+ granulocytes. Its expression was low in CD8+ T cells and mostly negative in CD16+ NK cells. PHA stimulation enhanced the expression of C33 Ag in CD4+ T cells by about 5-fold and in CD8+ T cells by about 20-fold. PHA stimulation also induced the dramatic size changes in the N-linked sugars previously shown to accompany human T cell leukemia virus type 1-induced transformation of CD4+ T cells.  相似文献   

11.
Persistent viral infections and inflammatory syndromes induce the accumulation of T cells with characteristics of terminal differentiation or senescence. However, the mechanism that regulates the end-stage differentiation of these cells is unclear. Human CD4(+) effector memory (EM) T cells (CD27(-)CD45RA(-)) and also EM T cells that re-express CD45RA (CD27(-)CD45RA(+); EMRA) have many characteristics of end-stage differentiation. These include the expression of surface KLRG1 and CD57, reduced replicative capacity, decreased survival, and high expression of nuclear γH2AX after TCR activation. A paradoxical observation was that although CD4(+) EMRA T cells exhibit defective telomerase activity after activation, they have significantly longer telomeres than central memory (CM)-like (CD27(+)CD45RA(-)) and EM (CD27(-)CD45RA(-)) CD4(+) T cells. This suggested that telomerase activity was actively inhibited in this population. Because proinflammatory cytokines such as TNF-α inhibited telomerase activity in T cells via a p38 MAPK pathway, we investigated the involvement of p38 signaling in CD4(+) EMRA T cells. We found that the expression of both total and phosphorylated p38 was highest in the EM and EMRA compared with that of other CD4(+) T cell subsets. Furthermore, the inhibition of p38 signaling, especially in CD4(+) EMRA T cells, significantly enhanced their telomerase activity and survival after TCR activation. Thus, activation of the p38 MAPK pathway is directly involved in certain senescence characteristics of highly differentiated CD4(+) T cells. In particular, CD4(+) EMRA T cells have features of telomere-independent senescence that are regulated by active cell signaling pathways that are reversible.  相似文献   

12.
Mammalian cell-derived West Nile virus preferentially infects cells expressing the C-type lectin CD209L (dendritic cellspecific ICAM-3 grabbing nonintegrin-related protein; liver- and lymph node-specific ICAM-3 grabbing nonintegrin) but not cells expressing CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). In contrast, Dengue virus infection is enhanced in cells expressing either attachment factor. The West Nile virus envelope (E) protein contains a single N-linked glycosylation site at residue 154, whereas Dengue virus E contains sites at residues 153 and 67. We introduced a glycosylation site at position 67 into West Nile virus E. Reporter virus particles pseudotyped with this E protein infected cells using either CD209 or CD209L. We also introduced glycosylation sites at several novel positions. All sites allowed CD209L-mediated infection, but only a subset promoted CD209 use. As seen for other viruses, mannose-rich glycans on West Nile virus were required for its interactions with CD209. Surprisingly, however, mannose-rich glycans were not required for CD209L-mediated infection. Complex glycans, particularly N-acetylglucosamine-terminated structures, were able to mediate reporter virus particle interactions with CD209L. We propose that CD209L recognizes glycosylated flaviviruses with broad specificity, whereas CD209 is selective for flaviviruses bearing mannose-rich glycans. The location of the N-linked glycosylation sites on a virion determines the types of glycans incorporated, thus controlling viral tropism for CD209-expressing cells.  相似文献   

13.
Pigment epithelial (PE) cells cultured from the eye possess the novel property of suppressing TCR-dependent activation of T cells in vitro. Iris PE (IPE) cells accomplish this suppression by a direct cell contact mechanism in which B7-2 expressed by the PE cells interacts with CTLA-4 on responding T cells. Because CTLA-4 expression is constitutively expressed on a very small proportion of naive splenic T cells and since exposure of splenic T cells to IPE leads to global T cell suppression, we have inquired into the mechanism by which suppression is achieved. Using splenic T cells and IPE from donor mice with disrupted genes for CD80 (B7-1), CD86 (B7-2), CTLA-4, and/or CD28, we report that B7-2(+) IPE in the presence of anti-CD3 supported selectively the activation of CTLA-4(+) CD8(+) T cells that express their own B7-2 and secrete enhanced amounts of active TGFbeta. By contrast, activation of CTLA-4-negative T cells, especially CD4(+) cells, in these cultures was profoundly suppressed. Because global suppression of T cell activation in these cultures was obtained only when both IPE and T cells possessed B7-2 genes and expressed the costimulators as surface molecules, we propose that T cells activated in the presence of parenchymal cells from the eye (an immune privileged site) express B7-2 in a manner that equips them to suppress bystander T cells. Thus, B7-2 expression on T cells participates in their eventual ability to function as regulators in vitro.  相似文献   

14.
CD4(+)CD25(+) regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4(+)CD25(-) T cells and are potent suppressors of CD4(+)CD25(-) T cell activation in vitro. We demonstrate that CD4(+)CD25(+) T cells also suppress both proliferation and IFN-gamma production by CD8(+) T cells induced either by polyclonal or Ag-specific stimuli. CD4(+)CD25(+) T cells inhibit the activation of CD8(+) responders by inhibiting both IL-2 production and up-regulation of IL-2Ralpha-chain (CD25) expression. Suppression is mediated via a T-T interaction as activated CD4(+)CD25(+) T cells suppress the responses of TCR-transgenic CD8(+) T cells stimulated with soluble peptide-MHC class I tetramers in the complete absence of APC. These results broaden the immunoregulatory role played by CD4(+)CD25(+) T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8(+) T cells to tumor or foreign Ags.  相似文献   

15.
M Gohlke  U Mach  R Nuck  B Volz  C Fieger  R Tauber  W Reutter 《FEBS letters》1999,450(1-2):111-116
In the present study we show that the H (0) blood group determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1-R is present on N-linked glycans of soluble human L-selectin recombinantly expressed in baby hamster kidney (BHK) cells. The glycans were isolated using complementary HPLC techniques and characterized by a combination of exoglycosidase digestion and mass spectrometry. The linkage of the fucose residues was determined by incubation of the glycans with specific fucosidases. The H blood determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1 was detected for bi-, 2,4 branched tri- and tetraantennary structures. To our knowledge, the proposed oligosaccharide structures represent a new glycosylation motif for recombinant glycoproteins expressed on BHK cells.  相似文献   

16.
The human T lymphocyte Ag CD28 (Tp44) is a homodimeric glycoprotein expressed on the surface of a majority of human peripheral T cells and thymocytes. Although exposure of T cells to anti-CD28 mAb does not activate T cells, stimulation of CD28 can synergize with signals transmitted through the TCR or other stimuli to augment proliferation and lymphokine production. We have used a portion of the human CD28 cDNA to isolate a homologous murine cDNA from an EL4 T lymphoma library. The murine clone has 61% nucleotide identity with the human cDNA. Both human and murine sequences exhibit homology with members of the Ig supergene family and CTLA-4, a T cell specific murine gene. Many characteristics of the human CD28 molecule are conserved within the putative murine CD28 polypeptide. The murine cDNA sequence encodes a polypeptide of 218 amino acids that has 68% identity with the human sequence. Both the murine and human molecules are integral membrane glycoproteins with hydrophobic signal peptide sequences and transmembrane region. All five potential N-linked glycosylation sites are conserved and six of the seven cysteine residues of the mouse protein are found in the human CD28 polypeptide. The murine cDNA is encoded by a single copy nonrearranging gene whose expression at the mRNA level is restricted to T cells. A rabbit antiserum was raised against a synthetic peptide corresponding to a hydrophilic portion of the translated murine cDNA sequence. This antiserum identifies an 80-kDa homodimer consisting of disulfide-bonded subunits of 40 kDa that is expressed on splenic T cells, thymocytes, and several T cell tumors, but not on B cells. deglycosylation studies indicate that four of the five N-linked glycosylation sites are used and that the mature core protein has a molecular mass of 25 kDa, close to that predicted by the cDNA sequence. Transfection of the murine cDNA into Chinese hamster ovary cells resulted in the expression of an 80-kDa dimeric molecule that was immunoprecipitated by the antipeptide antiserum. Taken together, these data provide strong support that we have identified the murine homologue of CD28.  相似文献   

17.
We have previously shown that Con A-induced suppressor T cells belong to the CD45RA+ subset. After unseparated T cells are activated with Con A, CD45RA expression increases to a maximum (Day 2), and then decreases significantly, but does not disappear entirely (Day 9), while CD29 expression increases steadily. In the present study, we examined the fate of these cell surface molecules on isolated CD4+CD45RA+ and CD4+CD45RA- cells following activation with Con A, and their relationship to the regulatory functions of these subsets. After activation of CD4+CD45RA+ cells with Con A, CD45RO and CD29 antigen expression rapidly increases (greater than 90%). While CD45RA expression is downregulated, approximately 40% of the cells continue to express low-density CD45RA in a stable fashion through Day 21. Despite these phenotypic changes, cells originally CD45RA+ continue to suppress IgG synthesis and provide only minimal B cell help. Furthermore, when cells originally CD45RA+ were sorted on the basis of continued presence, or loss of CD45RA antigen 14 days after activation, both populations demonstrated potent suppression and minimal help. In contrast, after activation with Con A, CD4+CD45A- cells maintain stable phenotype and provide significant help and minimal suppression. Immunoprecipitation of the CD45RA antigen from Day 14 activated CD4+CD45RA+ cells confirms the continued presence of the 205-kDa isoform, but reveals a significant decrease in the 220-kDa isoform. These results suggest that after activation with Con A, cells originally CD45RA+ remain functionally distinct from cells originally CD45RA-, and that CD45RA antigen persists on a subpopulation of CD45RA+ cells after activation with Con A.  相似文献   

18.
CD83 is a surface marker that differentiates immature and mature human dendritic cell populations. Thymic epithelial cell expression of CD83 is also necessary for efficient CD4+ T cell development in mice. The altered phenotypes of peripheral B and CD4+ T cells, and the reduction of peripheral CD4+ T cells in CD83-/- mice, suggest additional functions for CD83. To assess this, a panel of mAbs was generated to characterize mouse CD83 expression by peripheral leukocytes. As in humans, activation of conventional and plasmacytoid murine dendritic cell subsets led to rapid up-regulation of CD83 surface expression in mice. In primary and secondary lymphoid compartments, a subset of B cells expressed low-level CD83, while CD83 was not detected on resting T cells. However, CD83 was prominently up-regulated on the majority of spleen B and T cells within hours of activation in vitro. In vivo, a low dose of hen egg lysozyme (1 microg) induced significant CD83 but not CD69 expression by Ag-specific B cells within 4 h of Ag challenge. Although B cell development appeared normal in CD83-/- mice, B and CD4+ T cell expression of CD83 was required for lymphocyte longevity in adoptive transfer experiments. Thus, the restricted expression pattern of CD83, its rapid induction following B cell and T cell activation, and its requirement for B cell and CD4+ T cell longevity demonstrate that CD83 is a functionally significant and sensitive marker of early lymphocyte activation in vivo.  相似文献   

19.
The heavy glycosylation of HIV-1 envelope gp120 shields this important Ag from recognition by neutralizing Abs and cytolytic CD8 T cells. However, very little work has been done to understand the influence of glycosylation on the generation of gp120 epitopes and their recognition by MHC class II-restricted CD4 T cells. In this study, three conserved glycans (linked to N406, N448, and N463) flanking the C4 region of gp120 that contains many known CD4 T cell epitopes were disrupted individually or in combination by asparagine-to-glutamine substitutions. The mutant proteins lacking the N448 glycan did not effectively stimulate CD4 T cells specific for the nearby C4 epitopes, although the same mutants were recognized well by CD4 T cells specific for epitopes located in the distant C1 and C2 regions. The loss of recognition was not due to amino acid substitutions introduced to the mutant proteins. Data from trypsin digestion and mass spectrometry analyses demonstrated that the N448 glycan removal impeded the proteolytic cleavage of the nearby C4 region, without affecting more distant sites. Importantly, this inhibitory effect was observed only in the digestion of the native nondenatured protein and not in that of the denatured protein. These data indicate that the loss of the N448 glycan induces structural changes in the C4 region of gp120 that make this specific region more resistant to proteolytic processing, thereby restricting the generation of CD4 T cell epitopes from this region. Hence, N-linked glycans are critical determinants that can profoundly influence CD4 T cell recognition of HIV-1 gp120.  相似文献   

20.
The role of OX40L on the activation of T cells was investigated using poxvirus vectors expressing OX40L alone or in combination with three other T-cell costimulatory molecules: B7-1, ICAM-1, and LFA-3. Poxvirus vector-infected cells were used to stimulate nai;ve or activated CD4(+) and CD8(+) T cells. These studies demonstrate that (a) OX40L plays a role in sustaining the long-term proliferation of CD8(+) T cells in addition to the known effect on CD4(+) T cells following activation, (b) OX40L enhances the production of Th1 cytokines (IL-2, IFN-gamma, and TNF-alpha) from both CD4(+) and CD8(+) while no change in IL-4 expression was observed, and (c) the anti-apoptotic effect of OX40L on T cells is likely the result of sustained expression of anti-apoptotic genes while genes involved in apoptosis are inhibited. In addition, these are the first studies to demonstrate that the combined use of a vector driving the expression of OX40L with three other costimulatory molecules (B7-1, ICAM-1, and LFA-3) both enhances initial activation and then further potentiates sustained activation of nai;ve and effector T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号