首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Reconstitution of apophosphorylase with pyridoxal 5'-phosphate analogs   总被引:6,自引:0,他引:6  
  相似文献   

3.
4.
5.
6.
7.
8.
A mechanism for the phosphorylase reaction is proposed which offers a plausible explanation for the essential role of pyridoxal 5'-phosphate in glycogen phosphorylases: in the forward direction, phosphorolysis of alpha-1,4-glycosidic bonds in oligo- or polysaccharides is started by protonation of the glycosidic oxygen by the substrate orthophosphate followed by stabilization of the incipient oxocarbonium ion and subsequent covalent binding to form alpha-glucose 1-phosphate. In the reverse direction, protonation of the phosphate of glucose 1-phosphate destabilizes the glycosidic bond and promotes formation of a glucosyl oxocarbonium ion-phosphate anion pair. In the subsequent step the phosphate anion facilitates the nucleophilic attack of a terminal glucosyl residue on the carbonium ion bringing about alpha-1,4-glycosidic bond formation and primer elongation. Both in the forward and reverse reactions, the phosphate of the cofactor pyridoxal 5'-phosphate acts as a general acid (PL-OPO3H- or PL-OPO3(2-) and protonates the substrate phosphate functioning as proton shuttle. Thus in glycogen phosphorylases, phosphates which directly interact with each other have replaced a pair of amino acid carboxyl groups functioning in catalysis of carbohydrases.  相似文献   

9.
The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis   总被引:7,自引:0,他引:7  
  相似文献   

10.
11.
V Gani  A Kupfer  S Shaltiel 《Biochemistry》1978,17(7):1294-1300
  相似文献   

12.
To understand the catalytic mechanism of glycogen phosphorylase (EC 2.4.1.1), pyridoxal(5')phospho(1)-beta-D-glucose was synthesized and examined as a hypothetical intermediate in the catalysis. Pyridoxal phosphoglucose bound stoichiometrically to the cofactor site of rabbit muscle phosphorylase b in a similar mode of binding to the natural cofactor, pyridoxal 5'-phosphate. The rate of binding of pyridoxal phosphoglucose was only 1/100 compared with that of pyridoxal phosphate. The enzyme reconstituted with pyridoxal phosphoglucose showed no enzymatic activity at all even after prolonged incubation of the enzyme with substrates and activator. The present data would contradict participation of the phosphate group of pyridoxal phosphate in a covalent glucosyl-enzyme intermediate even if the covalent intermediate was formed during the catalysis.  相似文献   

13.
The changes in physical properties accompanying the removal of pyridoxal 5'-phosphate from glycogen phosphorylase b have been examined. The apoenzyme retains a high degree of structural rigidity, as determined from the time decay of anisotropy. The bulk of the secondary structure remains intact, although a significant change in circular dichroism indicates some degree of alteration. The mobility of a sulfhydryl-linked spin label increases. The restoration of pyridoxal 5'-phosphate reverses this effect, with indication of interaction between subunits. One or more new binding sites for 1-anilinonaphthalene-8-sulfonate appear for the apoenzyme. The kinetics of the recombination of pyridoxal 5'-phosphate with the apoenzyme, as monitored by difference spectra, indicate a high activation energy for the process. The apoenzyme is a reversibly associating system at 20-30 degrees C, pH 7.0.  相似文献   

14.
Y C Chang  R D Scott  D J Graves 《Biochemistry》1986,25(8):1932-1939
19F NMR spectroscopic properties of glycogen phosphorylase reconstituted with 6-fluoropyridoxal (6-FPAL) and 6-fluoropyridoxal phosphate (6-FPLP) were investigated. Analysis of the contribution of chemical shift anisotropy to the line width of the 6-FPLP-enzyme signal shows that the coenzyme molecule is tightly bound to the protein. The chemical shift of the fluorine nucleus in the free 6-FPLP protein is pH independent from pH 6 to pH 9.1. When the 6-FPLP-enzyme forms complexes with AMP, AMP plus glucose-1-P, and AMP plus inorganic phosphate, signals at -11.0, -13.1, and -10.4 ppm are observed, respectively. These different chemical shifts indicate that the protein in each complex has a distinct conformation. The exchange rate between the 6-FPLP-protein-AMP complex and the same complex with bound glucose-1-P is estimated to be 3300 +/- 700 s-1, and that between the 6-FPLP-protein-AMP complex and with bound inorganic phosphate is 500 +/- 100 s-1. The former exchange rate is 13 times faster than that of the same process for the 6-FPAL-enzyme. Analysis of the effects of temperature on the 19F line shape of the 6-FPLP enzyme in the presence of ligands shows that the exchange rates between different complexes drop significantly between 20 and 10 degrees C. Within this temperature range, Arrhenius plots of the enzymatic activities of the native and 6-FPLP-enzymes at varied temperatures also show a pronounced curvature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Previous crystallographic studies on glycogen phosphorylase have described the different conformational states of the protein (T and R) that represent the allosteric transition and have shown how the properties of the 5'-phosphate group of the cofactor pyridoxal phosphate are influenced by these conformational states. The present work reports a study on glycogen phosphorylase b (GPb) complexed with a modified cofactor, pyridoxal 5'-diphosphate (PLPP), in place of the natural cofactor. Solution studies (Withers, S.G., Madsen, N.B., & Sykes, B.D., 1982, Biochemistry 21, 6716-6722) have shown that PLPP promotes R-state properties of the enzyme indicating that the cofactor can influence the conformational state of the protein. GPb complexed with pyridoxal 5'-diphosphate (PLPP) has been crystallized in the presence of IMP and ammonium sulfate in the monoclinic R-state crystal form and the structure refined from X-ray data to 2.8 A resolution to a crystallographic R value of 0.21. The global tertiary and quaternary structure in the vicinity of the Ser 14 and the IMP sites are nearly identical to those observed for the R-state GPb-AMP complex. At the catalytic site the second phosphate of PLPP is accommodated with essentially no change in structure from the R-state structure and is involved in interactions with the side chains of two lysine residues (Lys 568 and Lys 574) and the main chain nitrogen of Arg 569. Superposition of the T-state structure shows that were the PLPP to be incorporated into the T-state structure there would be a close contact with the 280s loop (residues 282-285) that would encourage the T to R allosteric transition. The second phosphate of the PLPP occupies a site that is distinct from other dianionic binding sites that have been observed for glucose-1-phosphate and sulfate (in the R state) and for heptulose-2-phosphate (in the T state). The results indicate mobility in the dianion recognition site, and the precise position is dependent on other linkages to the dianion. In the modified cofactor the second phosphate site is constrained by the covalent link to the first phosphate of PLPP. The observed position in the crystal suggests that it is too far from the substrate site to represent a site for catalysis.  相似文献   

16.
A method to break the pyridoxal 5'-phosphate (PLP)-phosphorylase b bond using hydroxylamine and slightly acid pH is put forward and described in the present paper. This method does not involve drastic conditions or deforming reagents. The influence of pH and protein concentration on the removal of PLP from phosphorylase has also been studied, resulting in an order of -0.3 with respect to the enzyme, a value that implies a complex reaction. An additional conclusion is that an increase in the protein concentration entails better protection of the enzyme from attack by hydroxylamine.  相似文献   

17.
18.
The binding of the allosteric activator, AMP, and the inhibitor, ATP, to glycogen phosphorylase b has been studied in the crystal at 3 Å resolution. The nucleotides bind to two sites on the enzyme which are identified as site N, the allosteric effector site which is close to the subunit-subunit interface, and site I, a nucleoside inhibitor site which blocks the entrance to the active site crevasse. AMP when bound at the allosteric effector site makes several defined interactions with the enzyme in agreement with the results of solution studies. The contacts involve the N-10 position of the base, the 2′ hydroxyl of the ribose and the phosphate. IMP, analysed at 4 Å resolution, appears to bind in an identical conformation to AMP. At 3 Å resolution no well defined conformational changes are observed on binding AMP, although there are indications of a disturbance of the crystal lattice. It is concluded that the forces which stabilise the crystal lattice prevent the allosteric response of the enzyme in the crystal.  相似文献   

19.
20.
Escherichia coli pyridoxine (pyridoxamine) 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to pyridoxal 5'-phosphate (PLP) using flavin mononucleotide (FMN) as the immediate electron acceptor and oxygen as the ultimate electron acceptor. This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli. Removal of FMN from the holoenzyme results in a catalytically inactive apoenzyme. PLP molecules bind tightly to both apo- and holoPNPOx with a stoichiometry of one PLP per monomer. The unique spectral property of apoPNPOx-bound PLP suggests a non-Schiff base linkage. HoloPNPOx with tightly bound PLP shows normal catalytic activity, suggesting that the tightly bound PLP is at a noncatalytic site. The tightly bound PLP is readily transferred to aposerine hydroxymethyltransferase in dilute phosphate buffer. However, when the PNPOx. PLP complex was added to aposerine hydroxymethyltransferase suspended in an E. coli extract the rate of reactivation of the apoenzyme was several-fold faster than when free PLP was added. This suggests that PNPOx somehow targets PLP to aposerine hydroxymethyltransferase in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号