首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Transport of GSH was studied in isolated rat kidney cortical brush-border membrane vesicles in which gamma-glutamyltransferase had been inactivated by a specific affinity labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Transport of intact 2-3H-glycine-labeled GSH occurred into an osmotically active intravesicular space of AT-125-treated membranes. The initial rate of transport followed saturation kinetics with respect to GSH concentrations; an apparent Km of 0.21 mM and Vmax of 0.23 nmol/mg protein X 20 were calculated at 25 degrees C with a 0.1 M NaCl gradient (vesicle inside less than vesicle outside). Sodium chloride in the transport medium could be replaced with KCl without affecting transport activity. The rate of GSH uptake was enhanced by replacing KCl in the transport medium with K2SO4, providing a less permeant anion, and was reduced by replacing KCl with KSCN, providing a more permeant anion. The rate of GSH transport markedly decreased in the absence of a K+ gradient across the vesicular membranes and was enhanced by a valinomycin-induced K+ diffusion potential (vesicle-inside-positive). These results indicate that GSH transport is dependent on membrane potential and involves the transfer of negative charge. The rate of GSH transport was inhibited by S-benzyl glutathione but not by glycine, glutamic acid, and gamma-glutamyl-p-nitroanilide. When incubated with [2-3H]glycine-labeled GSH, intact untreated vesicles also accumulated radioactivity; the rate of uptake was significantly higher in a Na+ gradient than in a K+ gradient. Sodium-dependent transport, but not sodium-independent uptake, was almost completely inhibited by a high concentration of unlabeled glycine. At equilibrium, most of the radioactivity which accumulated in the intravesicular space was accounted for by free glycine. These results suggest that GSH which is secreted into the tubular lumen by a specific translocase in the lumenal membranes or filtered by the glomerulus may be degraded in situ by membranous gamma-glutamyltransferase and peptidase activities which hydrolyze peptide bonds of cysteinylglycine and its derivatives. The resulting free amino acids can be reabsorbed into tubule cells by sodium-dependent transport systems in renal cortical brush-border membranes.  相似文献   

2.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

3.
Abstract Ectothiorhodospira halochloris reacts upon enhancement of the water activity in the environment by excreting its major compatible solute, glycine betaine, thus decreasing the osmotic pressure inside the cell. A suddenly induced dilution stress leads to an overshoot of this reaction, so that more glycine betaine than necessary to compensate the external osmotic change is released. Subsequently the cells take up glycine betaine until they reach osmotic balance with the medium. E. halochloris possesses an active transport system that allows an uptake of glycine betaine against a concentration gradient. Glycine betaine is not metabolized in E. halochloris . Ectoine, a minor compatible solute of E. halochloris , is excreted in a similar manner to that of glycine betaine during dilution stress, whereas no excretion of the third compatible solute, trehalose, was detected.  相似文献   

4.
The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC. We investigated the specificity of each transporter towards each compatible solute at 4 degrees C by examining mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state compatible solute accumulation data together with growth rate experiments demonstrated that under cold stress glycine betaine transport is primarily mediated by Gbu and that Gbu-mediated betaine uptake results in significant growth stimulation of chill-stressed cells. BetL and OpuC can serve as minor porters for the uptake of betaine, and their action is capable of providing a small degree of cryotolerance. Under cold stress, carnitine transport occurs primarily through OpuC and results in a high level of cryoprotection. Weak carnitine transport occurs via Gbu and BetL, conferring correspondingly weak cryoprotection. No other transporter in L. monocytogenes 10403S appears to be involved in transport of either compatible solute at 4 degrees C, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown at that temperature.  相似文献   

5.
M Farwick  R M Siewe    R Krmer 《Journal of bacteriology》1995,177(16):4690-4695
Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system.  相似文献   

6.
Methanogenic Archaea are found in a wide range of environments and use several strategies to adjust to changes in extracellular solute concentrations. One methanogenic archaeon, Methanosarcina thermophila TM-1, can adapt to various osmotic conditions by synthesis of alpha-glutamate and a newly discovered compatible solute, Ne-acetyl-beta-lysine, or by accumulation of glycine betaine (betaine) and potassium ions from the environment. Since betaine transport has not been characterized for any of the methanogenic Archaea, we examined the uptake of this solute by M. thermophila TM-1. When cells were grown in mineral salts media containing from 0.1 to 0.8 M NaC1, M. thermophila accumulated betaine in concentrations up to 140 times those of a concentration gradient within 10 min of exposure to the solute. The betaine uptake system consisted of a single, high-affinity transporter with an apparent K3 of 10 microM and an apparent maximum transport velocity of 1.15 nmol/min/mg of protein. The transporter appeared to be specific for betaine, since potential substrates, including glycine, sarcosine, dimethyl glycine, choline, and proline, did not significantly inhibit betaine uptake. M. thermophila TM-1 cells can also regulate the capacity for betaine accumulation, since the rate of betaine transport was reduced in cells pregrown in a high-osmolarity medium when 500 microM betaine was present. Betaine transport appears to be H+ and/or Na+ driven, since betaine transport was inhibited by several types of protonophores and sodium ionophores.  相似文献   

7.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

8.
To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.  相似文献   

9.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

10.
Abstract A proton motive force (Δp) generated by oxidation of CO in membrane vesicles of Clostridium thermoautotrophicum drove active transport of l -alanine, glycine and l -serine. The maximum rate ( V max) for l -alanine transport was 12 × higher at 50°C than at 25°C. The apparent transport constant ( K t) for l -alanine uptake was 30–40 μM and independent of the temperature. Glycine was a substrate for the l -alanine transport system as demonstrated by the competitive inhibition of l -alanine uptake by glycine ( K i= 6 μ M), by the kinetics of glycine uptake ( K t= 7 μ M) and by the inhibiton of glycine uptake by l -alanine. The uptake kinetics of glycine was biphasic. l -Serine inhibited competitively also l -alanine and glycine transport but it was taken up by a separate transport system. The rate of amino acid transport, but not the K t, was dependent on the value of the proton motive force.  相似文献   

11.
Calcium transport was examined in microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue using chlorotetracycline as a fluorescent probe. This probe demonstrates an increase in fluorescence corresponding to calcium accumulation within the vesicles which can be collapsed by the addition of the calcium ionophore A23187. Calcium uptake in the microsomal vesicles was ATP dependent and completely inhibited by orthovanadate. Centrifugation of the microsomal membrane fraction on a linear 15 to 45% (w/w) sucrose density gradient revealed the presence of a single peak of calcium uptake which comigrated with the marker for endoplasmic reticulum. The calcium transport system associated with endoplasmic reticulum vesicles was then further characterized in fractions produced by centrifugation on discontinous sucrose density gradients. Calcium transport was insensitive to carbonylcyanide m-chlorophenylhydrazone indicating the presence of a primary transport system directly linked to ATP utilization. The endoplasmic reticulum vesicles contained an ATPase activity that was calcium dependent and further stimulated by A23187 (Ca(2+), A23187 stimulated-ATPase). Both calcium uptake and Ca(2+), A23187 stimulated ATPase demonstrated similar properties with respect to pH optimum, inhibitor sensitivity, substrate specificity, and substrate kinetics. Treatment of the red beet endoplasmic reticulum vesicles with [gamma-(32)P]-ATP over short time intervals revealed the presence of a rapidly turning over 96 kilodalton radioactive peptide possibly representing a phosphorylated intermediate of this endoplasmic reticulum associated ATPase. It is proposed that this ATPase activity may represent the enzymic machinery responsible for mediating primary calcium transport in the endoplasmic reticulum linked to ATP utilization.  相似文献   

12.
The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC. We investigated the specificity of each transporter towards each compatible solute at 4°C by examining mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state compatible solute accumulation data together with growth rate experiments demonstrated that under cold stress glycine betaine transport is primarily mediated by Gbu and that Gbu-mediated betaine uptake results in significant growth stimulation of chill-stressed cells. BetL and OpuC can serve as minor porters for the uptake of betaine, and their action is capable of providing a small degree of cryotolerance. Under cold stress, carnitine transport occurs primarily through OpuC and results in a high level of cryoprotection. Weak carnitine transport occurs via Gbu and BetL, conferring correspondingly weak cryoprotection. No other transporter in L. monocytogenes 10403S appears to be involved in transport of either compatible solute at 4°C, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown at that temperature.  相似文献   

13.
This study describes evidence for the existence of a H+/glycine symport system in rabbit renal brush-border membrane vesicles. An inward proton gradient stimulates glycine transport across the brush-border membrane, and this H+-driven glycine uptake is attenuated by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It is a positive rheogenic process, i.e. the H+-dependent glycine uptake is further enhanced by an intravesicular negative potential. Glycine uptake is stimulated to a lesser degree by an inward Na+ gradient. H+-dependent glycine uptake is inhibited by sarcosine (69%), an analog amino acid, imino acids (proline 81%, hydroxy proline 67%), and beta-alanine (31%), but not by neutral (L-leucine) or basic (L-lysine) amino acids. The results demonstrate that H+ glycine co-transport system in rabbit renal brush-border membrane vesicles is a carrier-mediated electrogenic process and that transport is shared by imino acids and partially by beta-alanine.  相似文献   

14.
The uptake of glycine in osmotically active brush border membrane vesicles (obtained by the Mg++ precipitation method) has been studied and a partial characterization of its transport system has been established. The glycine uptake in these vesicles was stimulated by the presence of sodium and in the presence of an inwardly directed Na+ -gradient glycine was accumulated inside the vesicles. The effect of Na+ was specific; other monovalent cation as Li+, K+, Rb+ and choline were uneffective in the stimulation of glycine uptake, under the same experimental conditions. Preliminary experiments show an important role of some anions on the glycine uptake. A strong inhibition in the uptake rate was found when the measurements were carried out in the presence of sodium cyclamate, while in the presence of NaSCN the measured uptake values were similar to those observed in the presence of NaCl.  相似文献   

15.
The effect of exogenous hypercortisolism and 1,25-dihydroxyvitamin D-3 on small-intestinal calcium and glucose transport in the rat was studied at the level of brush-border membrane vesicles generated from isolated villous cells by a freeze-thaw procedure. At 5 X 10(-5) M extravesicular calcium, initial uptake rates in vesicles prepared from triamcinolone-treated adult rats were decreased by 30% after 5 days. Since calcium ionophore A23187 virtually abolished the difference in calcium uptake, triamcinolone appeared to affect calcium channel density or activity rather than intravesicular binding capacity. Kinetic analysis showed that a decrease in Vmax of a saturable calcium transport system could entirely account for the diminished rate of vesicular calcium uptake. Calcium transport rates could be partially restored by in vivo administration of 1,25-dihydroxyvitamin D-3 at a dosage which did not affect vesicular calcium uptake in control animals. Conversely, sodium-driven glucose accumulation in brush-border vesicles from triamcinolone-treated rats was stimulated by 50-70% after 36 h and appeared insensitive to vitamin D. A specific triamcinolone action on the glucose carrier itself rather than on the driving force of the sodium gradient was indicated by (i) a similar stimulation of glucose transport under equilibrium exchange conditions and (ii) an opposite effect of triamcinolone on sodium-driven alanine transport. The triamcinolone-induced changes in calcium and glucose uptake were not accompanied by a gross alteration of membrane integrity in vitro or by major alterations in vesicular protein composition, intravesicular glucose space and sucrase or alkaline phosphatase activity. The modification of vesicular transport properties is discussed in relation to the vitamin D-antagonized inhibition of intestinal calcium uptake and the stimulation of glucose absorption in response to supraphysiologic amounts of glucocorticoids observed in intact epithelium.  相似文献   

16.
Supplisson S  Roux MJ 《FEBS letters》2002,529(1):93-101
In the brain, neurons and glial cells compete for the uptake of the fast neurotransmitters, glutamate, GABA and glycine, through specific transporters. The relative contributions of glia and neurons to the neurotransmitter uptake depend on the kinetic properties, thermodynamic coupling and density of transporters but also on the intracellular metabolization or sequestration of the neurotransmitter. In the case of glycine, which is both an inhibitory transmitter and a neuromodulator of the excitatory glutamatergic transmission as a co-agonist of N-methyl D-aspartate receptors, the glial (GlyT1b) and neuronal (GlyT2a) transporters differ at least in three aspects: (i) stoichiometries, (ii) reverse uptake capabilities and (iii) pre-steady-state kinetics. A 3 Na(+)/1 Cl(-)/gly stoichiometry was established for GlyT2a on the basis of a 2 charges/glycine flux ratio and changes in the reversal potential of the transporter current as a function of the extracellular glycine, Na(+) and Cl(-) concentrations. Therefore, the driving force available for glycine uphill transport in neurons is about two orders of magnitude larger than for glial cells. In addition, GlyT2a shows a severe limitation for reverse uptake, which suggests an essential role of GlyT2a in maintaining a high intracellular glycine pool, thus facilitating the refilling of synaptic vesicles by the low affinity, low specificity vesicular transporter VGAT/VIAAT. In contrast, the 2 Na(+)/1 Cl(-)/gly stoichiometry and bi-directional transport properties of GlyT1b are appropriate for the control of the extracellular glycine concentration in a submicromolar range that can modulate N-methyl D-aspartate receptors effectively. Finally, analysis of the pre-steady-state kinetics of GlyT1b and GlyT2a revealed that at the resting potential neuronal transporters are preferentially oriented outward, ready to bind glycine, which suggests a kinetic advantage in the uptake contest.  相似文献   

17.
Transport of the osmoprotectant and cryoprotectant glycine betaine was investigated in membrane vesicles of Listeria monocytogenes. Uptake-driving transmembrane potentials ranging from 111 to 122 mV within the pH range of 5.5 to 7.5 could be generated by the electron donor system ascorbate-phenazine methosulfate but not by the electron donor system ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine. Transport was dependent on both high concentrations of sodium ion and the presence of a hypertonic solute gradient. Arrhenius-type temperature activation was observed. Lineweaver-Burk plots indicated a Km of 4.4 microM for glycine betaine and a Vmax of 700 pmol/min x mg of protein. The Michaelis constant for NaCl depended on the solute used to maintain a constant hyperosmotic pressure, and the Km values were 200 and 75 mM when KCl and sucrose were employed, respectively. Transport was 65% lower in vesicles derived from cells grown under stress provided by KCI rather than NaCl and approximately 94% lower in vesicles derived from cells that were not grown under osmotic stress. This porter appears to be specific for glycine betaine, since neither proline, carnitine, nor choline inhibited uptake effectively. Kinetic studies using ionophores and artificial gradients indicate that glycine betaine is cotransported with sodium ion.  相似文献   

18.
The effect of exogenous hypercortisolism and 1,25-dihydroxyvitamin D-3 on small-intestinal calcium and glucose transport in the rat was studied at the level of brush-border membrane vesicles generated from isolated villous cells by a freeze-thaw procedure. At 5 · 10?5 M extravesicular calcium, initial uptake rates in vesicles prepared from triamcinolone-treated adult rats were decreased by 30% after 5 days. Since calcium ionophore A23187 virtually abolished the difference in calcium uptake, triamcinolone appeared to affect calcium channel density or activity rather than intravesicular binding capacity. Kinetic analysis showed that a decrease in Vmax of a saturable calcium transport system could entirely account for the diminished rate of vesicular calcium uptake. Calcium transport rates could be partially restored by in vivo administration of 1,25-dihydroxyvitamin D-3 at a dosage which did not affect vesicular calcium uptake in control animals. Conversely, sodium-driven glucose accumulation in brush-border vesicles from triamcinolone-treated rats was stimulated by 50–70% after 36 h and appeared insensitive to vitamin D. A specific triamcinolone action on the glucose carrier itself rather than on the driving force of the sodium gradient was indicated by (i) a similar stimulation of glucose transport under equilibrium exchange conditions and (ii) an opposite effect of triamcinolone on sodium-driven alanine transport. The triamcinolone-induced changes in calcium and glucose uptake were not accompanied by a gross alteration of membrane integrity in vitro or by major alterations in vesicular protein composition, intravesicular glucose space and sucrase or alkaline phosphatase activity. The modification of vesicular transport properties is discussed in relation to the vitamin D-antagonized inhibition of intestinal calcium uptake and the stimulation of glucose absorption in response to supraphysiologic amounts of glucocorticoids observed in intact epithelium.  相似文献   

19.
Glutathione-mediated transport across intestinal brush-border membranes   总被引:1,自引:0,他引:1  
Glutathione transport was studied in brush-border membrane vesicles of rabbit small intestine in which gamma-glutamyl transpeptidase (EC 2.3.2.2) had been inactivated by a specific affinity-labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT125). Transport of intact [glycine-2-3H]GSH occurred into an osmotically active intravesicular space of AT125-treated membranes. The 0.1 M NaSCN gradient (Na+ inside greater than Na+ outside) in the transport medium could be replaced with KSCN or NaCl without affecting transport activity. The initial rate of GSH transport followed Michaelis-Menten saturation kinetics (Km = 17 microM). The results suggest that, in these membranes, there was an Na+-independent mediated transport for intact GSH with marked specificity and affinity. In fact glycine, glutamic acid and cysteine did not decrease GSH uptake, as was also true for glycylglycine and glycylglycylglycine; only gamma-glutamylcysteinylglycyl ester, a derivative of GSH, partially inhibited GSH transport.  相似文献   

20.
1. In order to determine the different components of glycine uptake by the intestine of the frog, Discoglossus pictus, we have used brush border membrane vesicles isolated by a classical precipitation technique. 2. Enzymatic tests showed that a good purification was obtained. The concentration ratio of alkaline phosphatase was 14.8. 3. Glycine entry in vesicles as a function of time, in presence or absence of sodium, indicated an overshoot which decreased when incubation time was prolonged. The overshoot was dependent on the presence of sodium. 4. The nature of the anion associated to sodium had little effect on glycine uptake. Nevertheless, chloride and thiocyanate appeared more efficient than glutarate. 5. The effect of transmembrane potential was studied by using valinomycin associated with a potassium gradient. The addition of this substance stimulated glycine transport by 43%. 6. The transport at different glycine concentrations showed two components: one non-saturable with weak affinity and the other saturable with strong affinity (Kt = 0.338 mM). 7. In conclusion, glycine transport by the brush border of D. pictus intestine presents a saturable component depending on sodium and on transmembrane electrical potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号