首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmental Mg2+ used in preparation of Bacillus subtilis membranes was found to influence the responses of the associated ATPase to cetyltrimethylammonium bromide (CTAB). Membranes prepared using fluids containing higher Mg2+ levels exhibited lower control activity than was seen with low Mg2+ membranes. Increased environmental Mg2+ resulted in higher stimulations with lower doses of the agent. ATPase of all three membrane types was stimulated in two concentration ranges, but in the doses tested, CTAB inhibited the ATPase of only those membranes obtained using fluids containing high Mg2+ for every stage of the isolation. Sonication of membranes for 25 s at half maximum output yielded three fractions, consisting of a soluble form which was sensitive to CTAB stimulation at 25 microg/ml of assay mixture; small, 95-110 nm, vesicles, which were resistant to CTAB at 25, 75, and 150 microg/ml, and large vesicles, similar to untreated membranes both in morphology and responses to detergent. Combinations of detergent and protein (beta-lysin or arginine-rich histone) produced activity appearing to be additive when the protein level was present in a high concentration and the detergent was present at levels corresponding to the minimum influence. Mixtures of a maximally stimulating dose (75 or 100 microg/ ml) of detergent and a small amount of protein produced activities that were at least 92% or more of the expected sums of individual stimulations. Interference occurred with the following mixtures: high amounts of detergent and protein; high protein and 10 or 15 microg/ml CTAB; and beta-lysin and arginine-rich histone, both at high levels. These data are consistent with a hypothesis that the two peaks in CTAB stimulation reflect two adjacent ATPase sites, one of which is also susceptible to stimulation by cationic protein.  相似文献   

2.
The sarcolemmal membranes obtained from rat heart by sucrose-density gradient method were found to exhibit Ca2+ stimulated Mg2+ dependent ATPase and ATP-dependent Ca2+ binding activities. The Ca2+ stimulated ATPase activity was increased by calmodulin; maximal effect was seen at 1 to 5 μg/ml concentrations of calmodulin. The observed activation of the enzyme was associated with an increase in Vmax value from 3.45 to 5.26 μmol Pi/mg protein/hr and a decrease in Ka value from 2.78 to 0.84 μM Ca2+. Calmodulin was also found to increase ATP-dependent Ca2+ binding by 1.6 to 2.2 fold. These results suggest that the activity of Ca2+ pump mechanism in heart sarcolemma is regulated by calmodulin.  相似文献   

3.
Manuel J. Datiles 《BBA》2008,1777(4):362-368
Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory ε subunit (CF1-ε) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-ε or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-ε from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the α/β heterohexamer.  相似文献   

4.
Microsomal fractions from wheat (Triticum vulgare) and oat (Avena sativa) roots were used to study Mg2+ and Ca2+ activated adenosine triphosphatases, their dependence of pH, and how Mg2+ and Ca2+ compete or add in stimulation and inhibition. Wheat gives a high proportion of Ca2+ stimulated ATPase. Less effect is obtained with Mg2+. The characteristics of oar ATPase are the reverse. The ATPase from the wheat roots depends on the mineral nutrition. A kinetïc analysis shows one site, where Mg2+ and Ca2+ at low concentrations (or complexes between the di-valents and ATP) cooperate in the activation of the ATPase. The action of this site is more dearly expressed at pH 6.0 than at 6.8, and more clearly in the preparations from low salt roots than in those from high salt conditions. In another site, which is particularly evident in preparations from high salt roots tested at pH 6.8, high concentrations of Mg2+ inhibit the ATPase; this inhibition is competitively relieved by Ca2+. The specific activity of the ATPase from high salt roots of wheat is higher than that from low salt roots, although the amount of protein of the fraction studied remains the same, when calculated per g fresh weight of the roots.  相似文献   

5.
(1) Calmodulin-depleted red cell membranes catalyse a Ca2+, Mg2+-dependent ATP-[3H]ADP exchange at 37° C. The Ca2+, Mg2+-dependent exchange, measured at 20 μM CaCl2, 1.5 mM MgCl2, 1.5 mM ADP and 1.5 mM ATP, is comparable to the (Ca2+ + Mg2+)-ATPase activity, between 0.3 and 0.8 mmol/litre original cells per h. (2) EDTA-washed membranes present a Ca2+-dependent ATP-ADP exchange whose rate is not more than 7% of that found in a Mg2+-containing medium, while their Ca2+-dependent ATPase is essentially zero. Addition of 1.5 mM MgCl2 to the medium restores both activities to the levels found with membranes not treated with EDTA. (3) Calmodulin (16 μg/ml) produces an eight-fold stimulation of the Ca2+-dependent ATP-ADP exchange, slightly less than it stimulates the Ca2+-dependent ATP hydrolysis. The effect of 1.5 mM MgCl2 on the exchange is greater in the presence than in the absence of calmodulin. (4) It is proposed that the reversal of the initial phosphorylation of the Ca2+ pump, occurring at a fast rate at 37° C, involves a conformational change in the phosphoenzyme. Thus, it would be an ADP-liganded phosphoenzyme of the form EP(ADP) that would experience the fast conformational transition at 37° C. The great difficulty in producing an overall reversal of the Ca2+ pump should then be due to one or more reaction steps later than and including Ca2+ release and dephosphorylation.  相似文献   

6.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

7.
A Mg2+-dependent, cation-stimulated ATPase was associated with plasma membranes isolated from corn leaf mesophyll protoplasts. Potassium was the preferred monovalent cation for stimulating the ATPase above the Mg2+-activated level. The enzyme was substrate-specific for ATP, was inhibited by N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, p-chloromercuribenzoate, and orthovanadate, but was insensitive to oligomycin or sodium azide. A Km of 0.28 millimolar Mg2+-ATP was determined for the K+-ATPase, and the principal effect of potassium was on the Vmax for ATP hydrolysis. Since potassium stimulation was not saturated at high concentrations, a nonspecific role was proposed for potassium stimulation. A nonspecific phosphatase was also found to be associated with corn leaf plasma membranes. However, it could not be determined positively whether this activity represented a separate enzyme.  相似文献   

8.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

9.
A method for the isolation of guinea pig ileum smooth muscle cell membranes is described. The plasma membrane fraction possessed a (Na+, K+)-ATPase which was inhibitied by ouabain. The Mg2+-dependent ATPase of the membrane fraction was stimulated by 1 μM Ca2+. A basal ATPase, not dependent on Mg2+, was directly stimulated by Ca2+ in the range of 1 μM to 1 mM.The isolated membranes contracted in response to the following substances: ATP, angiotensin II and some of its analogs, bradykinin, acetylcholine and histamine. The contractility was inhibited by ouabain and chlorambucil-angiotensin II, but not by cytochalasin B. No contraction was produced by AMP, angiotensin I and adrenaline.  相似文献   

10.
The reaction of plasma membrane ATPase from yeast with Mg2+ and Mg · ATP was studied in a temperature range of 10 – 30°C. The random mechanism of activation by Mg2+ and the pseudocompetitive inhibition at higher concentrations was not altered when the temperature was varied, nor were the kinetic constants representing substrate binding. However, at low temperature, the affinity of the enzyme for Mg2+ is greatly reduced. The Arrhenius plot of log V vs. 1/T shows straight lines with an inflection point at 24°C, which disappears in the presence of detergent. Calorimetric studies of the plasma membranes show a transition point at the same temperature. From these findings we suppose that Mg2+ is bound at a regulatory site of the ATPase, which is influenced by the surrounding phospholipids.  相似文献   

11.
ATPase activity of plasma membranes isolated from oat (Avena sativa L. cv. Goodfield) roots was activated by divalent cations (Mg2+ = Mn2+ > Zn2+ > Fe2+ > Ca2+) and further stimulated by KCl and a variety of monovalent salts, both inorganic and organic. The enzyme exhibited greater specificity for cations than anions. The presence of Mg2+ was necessary for KCl stimulation. Ca2+ was ineffective in replacing Mg2+ for activation of plasma membrane ATPase, but it did activate other membrane-bound ATPases. The pH optima for Mg2+ activation and KCl stimulation of the plasma membrane ATPase were 7.5 and 6.5, respectively.  相似文献   

12.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2++Mg2+ dependent ATPase activities (about 9 μmol/h per mg protein). The Na++K++Mg2+ dependent ATPase activity was 3.2 μmol/h per mg (±1.0, S.D., n=3) when microvesicles were prepared according to (1) and 1.5 μmol/h per mg (±1.0, S.D., n=3) when prepared according to (2).Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2++Mg2+ dependent ATPase from any of the preparations.As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy.The Ca2++Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na++K++Mg2+ ATPase was decreased.Na++K++Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na++K++Mg2+ dependent ATPase activity in the eluted coated microvescile fraction.It was concluded that Ca2++Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

13.
The anionic detergents sodium dodecyl sulfate (SDS) and Alipal CO-433 and the non-ionic detergent Trition X-100 at concentrations of 0.02–0.10% cause a more rapid solubilization of phospholipid than proteins in isolated rat liver plasma membranes. All three detergents cause an increase in membrane turbidity at low detergent concentration (0.01–0.04%) but then decrease the turbidity at higher detergent concentration (0.04–0.10%). Each detergent gives a characteristic turbidity-detergent concentration profile which is pH dependent.The activities of the membrane-bound enzymes Mg2+ ATPase, 5′-nucleotidase and acid and aklaline phosphatase were influenced by each detergent to a different extent. Each enzyme gave a characteristic activity-detergent concentration profile. Mg2+ ATPase was inhibited by all detergents. 5′-Nucleotidase was stimulated by Triton and Alipal but inhibited by SDS. Alkaline phosphatase was stimulated by Alipal and SDS and not influenced by Triton. Acid phosphatase was stimulated by Triton and inhibited by Alipal and SDS. 56% of the total membrane-bound alkaline phosphatase and 23% of the total membrane-bound 5′-nucleotidase was solubilized in an active form by 0.06% and 0.05% SDS respectively.  相似文献   

14.
Demonstration of a high affinity Ca2+ ATPase in rat liver plasma membranes   总被引:4,自引:0,他引:4  
Rat liver plasma membranes contained a high affinity Ca2+-ATPase which had an apparent half saturation constant of 0.2 μM for calcium. The Ca2+-ATPase was not stimulated by adding magnesium and/or calmodulin. Conversely, the addition of these substances diminished the calcium-stimulation of the ATPase. Orthovanadate (7 nM-2 mM), mitochondrial ATPase blockers (NaN3, KCN, dicyclohexylcarbodiimide), Na+, K+ and ouabain had no effect on the ATPase activity. The ATPase was separated from nonspecific divalent cation stimulatable ATPase (Mg2+-ATPase) by solubilization with Triton X-100 followed by a Sephadex G-200 column chromatography and showed an apparent molecular weight of 200,000.  相似文献   

15.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124–132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ + K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ + K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca2+, and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ + K+)-activated ATPase activity averaged 10.07 ± 2.80 μmol Pi/mg protei per h compared to 50.03 ± 11.41 for Mg2+-activated ATPase and 58.66 ± 10.07 for 5′-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ + K+)-activated ATPase without any effect on Mg2+-activated ATPase. Both (Na+ + K+)-activated ATPase and Mg2+-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ + K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ + K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

16.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

17.
ATPase extracted from Streptococcus faecalis membranes was purified by preparative slab gel electrophoresis in the presence of Mg++ (plus Mg2+ ATPase) and without Mg2+ (minus Mg2+ ATPase). The subunit composition and membrane binding capacity of both preparations was then examined. The plus Mg2+ ATPase had 5 types of subunits (αβγδ?) and reattached normally to depleted membranes. The minus Mg2+ ATPase had the αβγ and ? chains, but no δ chain, and failed to reattach to membranes. These data indicate that Mg2+ or a similar cationic ligand anchors the δ chain to the core enzyme complex and that the δ chain in turn is needed for membrane attachment. For the plus Mg2+ ATPase the data are consistent with the subunit stoichiometry and arrangement, (α3β3 γ ?)-Mg2+)n?(δ).  相似文献   

18.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases.  相似文献   

19.
In order to examine the role of phospholipids in the activation of membrane bound Ca2+/Mg2+ ATPase, the activities of Ca2+ ATPase and Mg2+ ATPase were studied in heart sarcolemma after treatments with phospholipases A, C and D. The Mg2+ ATPase activity was decreased upon treating the sarcolemmal membranes with phospholipases, A, C and D; phospholipase A produced the most dramatic effect. The reduction in Mg2, ATPase activity by each phospholipase treatment was associated with a decrease in the Vmax value without any changes in the Ka value. The depression of Mg2+ ATPase in the phospholipase treated preparations was not found to be due to release of fatty acids in the medium and was not restored upon reconstitution of these membranes by the addition of synthetic phospholipids such as lecithin, lysolecithin or phosphatidic acid. In contrast to the Mg2+ ATPase, the sarcolemmal Ca2+ ATPase was affected only slightly by phospholipase treatments. The greater sensitivity of Mg- ATPase to phospholipase treatments was also apparent when deoxycholate-treated preparations were employed. These results indicate that glycerophospholipids are required for the sarcolemmal Mg2+ ATPase activity to a greater extent in comparison to that for the Ca2+ ATPase activity and the phospholipids associated with Mg2+ ATPase are predominantly exposed at the outer surface of the membrane.  相似文献   

20.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号