首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycophorin was incorporated into large unilamellar dioleoylphosphatidylcholine vesicles by either a detergent dialysis method using octylglucoside or a method avoiding the use of detergents. The vesicles were characterized and the permeability properties and transbilayer movement of lipids in both vesicles were investigated as a function of the protein concentration and were compared to protein-free vesicles. An insight in the permeability properties of the vesicles was obtained by monitoring the ratio potassium (permeant): dextran (impermeant) trap immediately after separation of the vesicles from the external medium. Glycophorin incorporated without the use of detergents in 1:300 protein:lipid molar ratio induces a high potassium permeability for the majority of the vesicles as judged from the low potassium trap (K+:dextran trap = 0.21). In contrast, the vesicles in which glycophorin is incorporated via the octylglucoside method (1:500 protein:lipid molar ratio) are much less permeable to potassium (K+:dextran trap = 0.67 and t12 of potassium efflux at 22°C is 7.5 h.). The relationship between protein-induced bilayer permeability and lipid transbilayer movement in both vesicle preparations is discussed. Addition of wheat-germ agglutinin to glycophorin-containing vesicles comprised of dioleoylphosphatidylcholine and total erythrocyte lipids caused no or just a small effect (less than 20% release of potassium) on the potassium permeability of these vesicles. Also, addition of lectin to dioleoylphosphatidylethanolamine-glycophorin bilayer vesicles in a 25:1 lipid:glycophorin molar ratio had no effect on the permeability characteristics of the vesicles. In contrast, addition of wheat-germ agglutinin to bilayer vesicles made of dioleoylphosphatidylethanolamine and glycophorin in a 200:1 molar ratio resulted in a release of 74% of the enclosed potassium by triggering a bilayer to hexagonal (HII) phase transition. The role of protein aggregation and the formation of defects in the lipid bilayer on membrane permeability and lipid transbilayer movement is discussed.  相似文献   

2.
Membrane vesicles from Escherichia coli wild type and an otherwise isogenic dnaA mutant were used to immunize rabbits. In addition, a membrane protein fraction, containing the material found deficient in dnaA mutants, was purified by preparative polyacrylamide gel electrophoresis in sodium dodecylsulfate, and used for immunization. The antisera produced were analyzed by immunoelectrophoresis and immunofluorescence microscopy. The antisera obtained by immunization with membrane vesicles from either wild type or dnaA mutant membrane preparations were qualitatively similar in the precipitin bands seen after immunoelectrophoresis. The antisera obtained by immunization with the purified protein fraction contained a subset of the antibodies seen when whole vesicles were used for immunization. In a semiquantitative precipitin assay, the antisera prepared against whole membrane vesicles or the isolated protein fraction both caused the precipitation of more protein from sodium dodecylsulfate-solubilized membranes of wild type than of dnaA mutants. No difference was seen by immunoelectrophoresis between the protein composition of wild type or dnaA membrane preparations. Thus, the dnaA mutant appears to differ from the wild type in the quantitative composition of its membrane proteins, whereas no qualitative differences were detected.Fluorescein-conjugated antiserum preparations were employed to assess the reactivity of intact cells, spheroplasts and membrane vesicles with the antisera studied above. Wild type cells of E. coli have a barrier to reaction with the antisera; this barrier is removed when the cells are converted to spheroplasts or to membrane vesicle. Similarly, a highly permeable mutant of E. coli permits reaction of the antisera with unaltered cells. Antisera to both whole membrane vesicles and to the isolated protein fraction react identically with the cellular and subcellular preparations. Thus, antisera prepared from membrane proteins isolated after sodium dodecylsulfate-polyacrylamide gel electrophoresis can still recognize some antigens present in membrane vesicle preparations.  相似文献   

3.
Peter R. Rich  Peter Heathcote 《BBA》1983,723(2):332-340
(i) Purified bovine heart mitochondrial cytochrome b-c1 complex (ubiquinone-cytochrome c oxidoreductase) and photosynthetic reaction centres isolated from Rhodopseudomonas sphaeroides strain R-26 have been incorporated into lipid vesicles. In the presence of cytochrome c and ubiquinone-2, light activation caused a cyclic electron transfer involving both components. (2) Since cytochrome c is added outside the vesicles, it is both reduced by the cytochrome b-c1 complex and oxidised by the reaction centre on the outside of the vesicles. Ubiquinone-2, however, is reduced by the reaction centres at a site in contact with the inside of the vesicles, but the reduced form, ubiquinol-2, is oxidised by the cytochrome b-c1 complex at a site in contact with the outer aqueous phase. (3) In the presence of valinomycin plus K+, initiation of cyclic electron flow causes protons to move from inside the vesicles to the outer medium and the H+2e? ratio was calculated to be close to 4.  相似文献   

4.
Bacteriorhodopsin has been reconstituted into lipid vesicles with dipalmitoyl and dimyristoyls phosphatidylcholine. Circular dichroism (CD) measurements show that the proteins are in a monomeric state above the main lipid phase transition temperature (Tc), 41 and 23°C for dipalmitoyl and dimyristoyl phosphatidylcholine, respectively. Below Tc, the CD spectrum is the same as that found for the purple membrane. The latter result implies that the orientation of the chromophore at these temperatures is most likely the same as in the purple membrane (70° ± 5° from the normal to the membrane plane).Transient dichroism measurements show that below Tc the proteins are immobile, while above this temperature protein rotation around an axis normal to the plane of the membrane is occurring. In addition, from the data the angle of the chromophore for the rotating proteins with respect to the rotational diffusion axis can be calculated. This angle is found to be 30° ± 3° and 29° ± 4° in dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, respectively. This is considerably smaller than the value of 70° ± 5° for the natural biomembrane. A reversible reorientation of the chromophore above and below the respective main Tc transition temperature could explain the change of angle observed provided that all the molecules rotate above Tc.  相似文献   

5.
Fatty acid spin labels containing nitroxide groups at different positions in the fatty acid chain have been incorporated into lipid vesicles. Changes in esr parameters of the spin labels in the presence in the membrane of phytol, propionic acid phytol ester or chlorophyll a and the kinetics of chlorophyll a mediated photodestruction of the spin labels suggest a localization of the macrocyclic ring of the chlorophyll molecule in the polar head group region of the membrane.  相似文献   

6.
Rough and smooth microsomes and Golgi membranes incorporate N-acetylglucosamine from UDP-N-acetylglucosamine into endogenous protein acceptors. A lipid intermediate of the dolichol phosphate type participates in this transfer reaction in the case of both microsomal subfractions, but the nature of lipid glycosylation is different in these two fractions. Glucosamine transfer in Golgi membranes does not appear to involve a lipid intermediate. In contrast to the results obtained under in vivo conditions, no glucosamine label is recovered in nascent ribosomal proteins or on luminal secretory proteins after incubation in vitro. Proteolysis of intact vesicles of the subfractions removes glycosylated dolichol phosphate and protein acceptors to various extents and interferes with transferase activities. This finding suggests the possibility that glycosylation at the cytoplasmic side of the membrane of the endoplasmic reticulum may involve a system separate from that acting at the luminal side of the same membrane.  相似文献   

7.
A radioactively-labelled glycosphingolipid, asialo-GM1, has been incorporated into phosphatidylcholine multilamellar vesicles. After incubation with ferritin-Ricinus communis agglutinin 60 (RCA 60) conjugate at different temperatures, the vesicles were separated from the conjugate by discontinuous density gradient ultracentrifugation. Measurement of the distribution of the radioactively-labelled asialo-GM1 in the pelleted conjugate fraction and freeze-etch electron microscopy of the vesicle fraction indicate that the decrease in labelling of asialo-GM1-containing vesicles by ferritin-RCA 60 conjugate with increasing temperatures (Tillack, T.W., Wong, M., Allietta, M. and Thompson, T.E. (1982) Biochim. Biophys. Acta 691, 261–273) reflects a decrease in apparent binding affinity rather than an ability of the conjugate to extract glycolipid from the phospholipid bilayer after binding.  相似文献   

8.
The lateral diffusion of the excimer-forming probe pyrene decanoic acid has been determined in erythrocyte membranes and in vesicles of the lipid extracts. The random walk of the probe molecules is characterized by their jump frequency, vj, within the lipid matrix. At T = 35°C a value of vj = 1.6 · 103 s?1 is found in erythrocyte membranes. A somewhat slower mobility is determined in vesicles prepared from lipid extracts of the erythrocyte membrane. Depending on structure and charge of the lipids we obtain jump frequencies between 0.8 · 108 s?1 and 1.5 · 108 s?1 at T = 35°C. The results are compared with jump frequencies yielded in model membranes.The mobility of molecules perpendicular to the membrane surface (transversal diffusion) is investigated. Erythrocyte ghosts doped with pyrene phosphatidylcholine were mixed with undoped ghosts in order to study the exchange kinetics of the probe molecule. A fast transfer between the outer layers of the ghost cells (τ12 = 1.6 min at T = 37°C) is found. The exchange process between the inner and the outer layer of one erythrocyte ghost (flip-flop process) following this fast transfer occurs with a half-life time value of t12 = 100 min at T = 37°C.The application of excimer-forming probes presumes a fluid state of the membrane. Therefore we investigated the phase transition behaviour using the excimer technique. Beside a thermotropic phase transition at T = 23°C and T = 33°C we observed an additional fluidity change at T = 38°C in erythrocyte ghosts. This transition is attached to a separation of the boundary lipid layer from the intrinsic proteins. No lipid phase transition is observed in liposomes from isolated extracts of the erythrocyte membrane with our methods.  相似文献   

9.
Membrane vesicles from a red mutant of Halobacteriumhalobium R1 accumulate protons when illuminated causing the pH of the suspension to rise. Sodium is extruded from the vesicles and a membrane potential is formed. This potential and the proton uptake are abolished by valinomycin if K+ is present. In contrast, Na+-efflux is uninhibited by valinomycin even though no membrane potential is detectable and H+ influx does not occur. Bis (hexafluoracetonyl)acetone (1799) stimulates proton uptake but does not abolish membrane potential. We propose that a light-dependent sodium pump is present. Passive proton uptake occurs in response to the electrical gradient created by this light-driven Na+ pump in contrast to the active proton, and passive Na+ flux that occurs in response to the light-driven proton pump described in vesicles of the parent strain of H.halobium R1.  相似文献   

10.
Canine trachealis was homogenized and the various membrane fractions isolated by differential centrifugation and discontinuous sucrose gradient centrifugation. A membrane fraction enriched in the plasma membrane marker enzymes 5′-nucleotidase (5-fold) and K+-activated ouabain sensitive p-nitrophenylphosphatase (3-fold) was obtained. The fraction contained very low levels of the inner mitochondrial marker succinate: cytochrome c oxidoreductase. These plasma membrane vesicles showed higher ATP-dependent Ca-uptake (20 μmoles/g protein) than any other submicrosomal fraction. The active Ca-uptake was enhanced by oxalate. The Ca taken up by the plasma membrane vesicles was released instantaneously by dilution in 5mM EGTA and 10μM A23187 and more slowly by dilution only in 5mM EGTA.  相似文献   

11.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

12.
We examined the interaction of glycolipid-containing phospholipid vesicles with rat hepatocytes in vitro. Incorporation of either N-lignoceroyldihydrolactocerebroside or the monosialoganglioside, GM1, enhanced liposomal lipid uptake 4–5-fold as judged by the uptake of radioactive phosphatidylcholine as a vesicle marker. Cerebroside enhanced phospholipid uptake only when incorporated into dimyristoyl, but not into egg phosphatidylcholine vesicles. The lack of cerebroside effect in egg phosphatidylcholine-containing vesicles appeared to be due to a limited exposure of the carbohydrate part of the glycolipid as suggested by the reduced agglutinability of those vesicles by Ricinus communis agglutinin.In contrast to the results with radioactive phosphatidylcholine, we observed only a 20% increase in vesicle-cell association as a result of glycolipid incorporation, when a trace amount of [14C]cholesteryloleate served as a marker of the liposomal lipids or when using the fluorescent dye, carboxyfluorescein, as a marker of the aqueous space of the vesicles. By the same token, intracellular delivery of vesicle-contents was only slightly enhanced (approx. 10%).The discrepancy between the association with the cells of phosphatidylcholine on the one hand and cholesteryoleate or entrapped marker on the other suggests different mechanisms of uptake for these markers. Our results are compatible with the notion that the main effect of incorporation of glycolipids into the vesicles is the enhancement of exchange or transfer of phospholipid molecules between vesicles and cells. Incubation of the cells with galactose or lactose, prior to addition of vesicles, suggests that this enhanced phospholipid exchange or transfer involves specific recognition of the terminal galactose residues of the glycolipid vesicles by a receptor present on the plasma membranes of hepatocytes.  相似文献   

13.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

14.
One of the major proteins of the outer membrane of Escherichia coli, the matrix protein (porin), has been isolated by detergent solubilisation. When the protein is added in concentrations of the order of 10 ng/cm3 to the outer phases of a planar lipid bilayer membrane, the membrane conductance increases by many orders of magnitude. At lower protein concentrations the conductance increases in a stepwise fashion, the single conductance increment being about 2 nS (1 nS = 10?9siemens = 10?9 Ω?1) in 1 M KCl. The conductance pathway has an ohmic current vs. voltage character and a poor selectivity for chloride and the alkali ions. These findings are consistent with the assumption that the protein forms large aqueous channels in the membrane. From the average value of the single-channel conductance a channel diameter of about 0.9 nm is estimated. This channel size is consistent with the sugar permeability which has been reported for lipid vesicles reconstituted in the presence of the protein.  相似文献   

15.
Using differential scanning calorimetry and freeze fracture electron microscopy interactions were studied between lipids and a spectrin · action complex isolated from human erythrocyte membranes. With dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol and mixtures of these two compounds, which for experimental reasons were chosen as the lipid counterpart, such an interaction could clearly be deduced from changes in the temperature and the enthalpy of the phase transition. Furthermore it was demonstrated that the interaction with this membrane protein protects the bilayer against the action of Ca2+ and Mg2+ and prevents fusion of lipid vesicles which easily occurs in some of the systems when divalent ions were added to the pure lipid vesicles.  相似文献   

16.
Disruption of the coat of coated vesicles is accompanied by the release of clathrin and other proteins in soluble form. The ability of solubilized coated vesicle proteins to reassemble into empty coats is influenced by Mg2+, Tris ion concentration, pH, and ionic strength. The proteins solubilized by 2 M urea spontaneously reassemble into empty coats following dialysis into isolation buffer (0.1 M MES–1 mM EGTA–1 mM MgCl2–0.02% NaN3, pH 6.8). Such reassembled coats have sedimentation properties similar to untreated coated vesicles. Clathrin is the predominant protein of reassembled coats; most of the other proteins present in native coated vesicles are absent. We have found that Mg2+ is important in the coat assembly reaction. At pH 8 in 0.01 M or 0.1 M Tris, coats dissociate; however, 10 mM MgCl2 prevents dissociation. If the coats are first dissociated at pH 8 and then the MgCl2 raised to 10 mM, reassembly occurs. These results suggest that Mg2+ stabilizes the coat lattice and promotes reassembly. This hypothesis is supported by our observations that increasing Mg2+ (10 μM–10 mM) increases reassembly whereas chelation of Mg2+ by (EGTA) inhibits reassembly. Coats reassembled in low-Tris (0.01 M, pH 8) supernatants containing 10 mM MgCl2 do not sediment, but upon dialysis into isolation buffer (pH 6.8), these coats become sedimentable. Nonsedimentable coats are noted also either when partially purified clathrin (peak I from Sepharose CL4B columns) is dialyzed into low-ionic-strength buffer or when peaks I and II are dialyzed into isolation buffer. Such nonsedimentable coats may represent intermediates in the assembly reaction which have normal morphology but lack some of the physical properties of native coats. We present a model suggesting that tightly intertwined antiparallel clathrin dimers form the edges of the coat lattice.  相似文献   

17.
Experimental hyperglycemia leads to an increase in the capacity of the rat small intestine to absorb glucose. This effect occurs within hours from the onset of hyperglycemia and is thought to involve an induction of glucose transport in the brush-border and/or basolateral membrane of the intestinal epithelium. We devised a protocol for the simultaneous preparation of brush-border vesicles and basolateral vesicles from rat small intestine to determine the locus for the inductioof glucose transporter in hyperglycemic rats. A 6 h period of intravenous infusion with a 30% glucose solution had no effect on the initial rate of glucose uptake across jejunal or ileal brush-border vesicles when measured in the absence of a Na+ gradient, suggesting that enhanced glucose uptake is not dependent on an increase in the number of Na+-dependent secondary active glucose transporters in the brush-border. Hyperglycemia did not effect the rate of glucose uptake across ileal basolateral vesicles but did cause a 78% increase in the initial rate of carrier-mediated d-glucose uptake across jejunal basolateral vesicles. The induction of glucose transport in the jejunal basolateral membrane was characterized by a rapid rate of glucose equilibration across the vesicles (t12 = 46 s sorbitol infused controls, 18 s hyperglycemia) and a 75% increase in the Vmax for carrier-mediated glucose uptake with no significant change in Kt. When the rats were pretreated with cycloheximide prior to intravenous infusion, the initial rate of d-glucose uptake dropped to 13% of that seen in jejunal basolateral vesicles prepared from untreated rats. These results suggest a rapid turnover rate for the Na+-independent glucose transporter in the basolateral membrane of the enterocyte. An increase in the number of functioning glucose transporters in the basolateral membrane may play an important role in the short-term induction of glucose absorption by the jejunum of the hyperglycemic animal.  相似文献   

18.
A thiodigalactoside binding protein is solubilized from membrane vesicles of EscherichiaColi containing the M protein by use of the detergents Triton X-100 or Emulfogen BC 720. Thiodigalactoside binding affinity of the soluble protein is the same as the membrane embedded β-galactoside permease whereas the residual particulate fraction is free of affinity for this substrate.  相似文献   

19.
Previous studies have shown that the assembly of the precursor shell (prohead) of bacteriophage P22 requires the copolymerization of the gene 5 coat protein with the gene 8 scaffolding protein. Removal of the scaffolding protein by mutation prevents efficient coat protein assembly, but some aberrant particles do form. We have now isolated these structures and characterized them with respect to morphology, protein composition, and small-angle X-ray scattering properties.The aberrant particles fall into three morphological classes, i.e. complex spirals and closed shells of two sizes. Small-angle X-ray scattering studies confirm that the larger particles are hollow shells with the radius of proheads (r = 260 A?), and not of the mature virus (r = 285 A?). These structures lack the inner shell of scaffolding protein found in proheads. The small particles have a radius of 195 Å, smaller than proheads, and appear to contain material, not scaffolding protein, within the outer shell.The aberrant particles contain two minor protein species, the gene 9 tail-spike protein, and an unidentified 67,000 molecular weight polypeptide, probably from the host. Neither is found in normal proheads. Removal of gene.9 product by mutation did not affect the formation of the aggregates. Fractionation of the morphological classes of particles revealed that the 67,000 molecular weight band was associated with the closed shells. It may be serving as a pseudo-initiator.Earlier studies had shown that treatment of proheads with sodium dodecyl sulfate in vitro resulted in loss of the scaffolding protein, and expansion of the shell to the mature radius of 285 Å. When the 8? prohead-sized shells were treated similarly, they also expanded to the mature-sized shell. These results support the idea that there are at least two stable states of the coat protein, one of which, the prohead form, is an obligatory precursor of the mature form.  相似文献   

20.
The influence of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and several other pesticides on the physical state of membrane phospholipids was investigated using model lipids. The thermal dependence of fluorescence intensity of the probe parinaric acid in dipalmitoylphosphatidylcholine liposomes and lipid vesicles of mixed composition were recorded. DDT was incorporated into the liposomal bilayer. The insecticide lowered the phase transition temperature and broadened the temperature range of the transition. The effects were concentration-dependent.The results may be interpreted as a sort of blurred and facilitated phase transition of bilayer lipids caused by intercalation of DDT between fatty acyl chains of membrane phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号