首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

2.
Acholeplasma laidlawii was grown with different fatty acids for membrane lipid synthesis (saturated straight- and branched-chain acids and mono- and di-unsaturated acids). The ability of 12 different sterols to affect cell growth, lipid head group composition, the order parameter of the acyl chains, and the phase equilibria of in vivo lipid mixtures was studied. The following two effects were observed with respect to cell growth: with a given acyl chain composition of the membrane lipids, growth was stimulated, unaffected, reduced, or completely inhibited (lysis), depending on the sterol structure; and the effect of a certain sterol depended on the acyl chain composition (most striking for epicoprostanol, cholest-4-en-3-one, and cholest-5-en-3-one, which stimulated growth with saturated acyl chains but caused lysis with unsaturated chains). The three lytic sterols were the only sterols that caused a marked decrease in the ratio between the major lipids monoglucosyldiglyceride and diglucosyldiglyceride and hence a decrease in bilayer stability when the membranes were enriched in saturated (palmitoyl) chains. With these chains correlations were found for several sterols between the glucolipid ratio and the order parameter of the acyl chains, as well as the lamellar-reversed hexagonal phase transition, in model systems. A shaft experiment revealed a marked decrease in the ratio of monoglucosyldiglyceride to diglucosyldiglyceride with the lytic sterols in unsaturated (oleoyl) membranes. The two cholestenes induced nonlamellar phases in in vivo mixtures of oleoyl A. laidlawii lipids. The order parameters of the oleoyl chains were almost unaffected by the sterols. Generally, the observed effects cannot be explained by an influence of the sterols on the gel-to-liquid crystalline phase transition.  相似文献   

3.
Membrane Lipids of Mycoplasma hominis   总被引:15,自引:10,他引:5  
Essentially all of the lipids of Mycoplasma hominis (200 mug/mg of cell protein) were found to be located in the cell membrane. Over one-half were neutral lipids incorporated from the growth medium and consisting of 43% free cholesterol, 19% esterified cholesterol, 23% triglycerides, 10% free fatty acids, and small amounts of di- and monoglycerides. The polar lipids accounting for about 40% of the total were synthesized by the organisms. Phosphatidylglycerol was the predominant lipid of this fraction. The minor components, tentatively identified as lysophosphatidylglycerol and phosphatidic acid, seem to represent breakdown products of phosphatidylglycerol. No glycolipids were detected. Being unable to synthesize long-chain fatty acids, M. hominis utilized the fatty acids of the growth medium for polar lipid synthesis, preferentially the saturated ones, so that the polar lipids had highly saturated hydrocarbon chains. It is proposed that the large take up of unsaturated neutral lipids and cholesterol from the medium offsets the marked condensing effect of the saturated polar lipids, although electron paramagnetic resonance spectrometry of spin-labeled fatty acids incorporated into the M. hominis membrane indicated that the lipid region is still more rigid than that of the Acholeplasma laidlawii membrane.  相似文献   

4.
1. Membrane lipid metabolism in Acholeplasma laidlowii A EF 22 has been studied under different conditions by applying three different techniques for changing membrane viscosity: fatty acid and cholesterol supplementation and temperature changes. 2. The molar relationship between the two dominating membrane lipids, monoglucosyldiglyceride and diglucosyldiglyceride, is to a large extent determined by membrane viscosity properties. This is shown by the varying metabolic responses occurring during incorporation of different fatty acids with and without cholesterol and by temperature shift-down experiments. Higher viscosity in membranes stimulates synthesis of monoglucosyldiglyceride at the expense of diglucosyldiglyceride. Synthesis of phospho and phosphoglucolipids is affected as well. 3. Temperature shift-down from 37 degrees C to 17 degrees C results in an immediate synthesis of monoglucosyldiglyceride accompanied by an increased incorporation of unsaturated fatty acids into this lipid. Synthesis of the other membrane lipid species (containing more unsaturated fatty acids) lags behind temporarily. 4. Incorporation from an equimolar mixture of palmitic and oleic acids together with cholesterol yields greater amounts of oleic acid in membrane lipids than incorporation in the absence of cholesterol, indicating that incorporation is viscosity dependent. 5. Studies of precursor relationships reveal that all main lipids have an active turnover which differs depending on membrane composition and conditions. Furthermore, this turnover proceeds with different intra-lipid pools. 6. Isolated membranes contain no detectable lipolytic enzymes capable of hydrolyzing membrane phospho or glycolipids. It is suggested that lipid turnover is partly mediated by enzymatic interlipid conversions, thus not allowing intermediates to accumulate.  相似文献   

5.
The low level of endogenous fatty acid synthesis in Acholeplasma laidlawii A strain EF22 was found to be caused by a deficiency of pantetheine in the lipid-depleted growth medium. By supplementing the oleic acid-containing medium with increasing concentrations of pantetheine, saturated fatty acid synthesis was stimulated (having an apparent Km of 5 μM for pantetheine) and the incorporation of endogenously synthesized fatty acids in membrane lipids increased markedly. Furthermore, carotenoid biosynthesis was stimulated. Exogenous palmitic acid was found to inhibit partially the endogenous fatty acid synthesis. A gradual stimulation of fatty acid synthesis was accompanied by a linear increase in the molar proportion between the two dominating membrane glucolipids, monoglucosyldiacylglycerol and diglucosyldiacylglycerol. The total amount of charged membrane lipids decreased upon increasing the degree of fatty acid saturation. These regulations are discussed in terms of membrane stability, and influence of membrane molecular ordering and surface charge density on lipid polar head group synthesis.  相似文献   

6.
The lipid composition was affected by growth temperature in Anacystis nidulans, but was not in Anabaena variabilis. A. variabilis contained fatty acids of 18 and 16 carbon atoms, which were localized at 1- and 2-positions, respectively, of the glycerol moiety of lipids. Desaturation of C18 acids was affected by the growth temperature. A. nidulans contained fatty acids of 14, 16 and 18 carbon atoms. Monounsaturated and saturated acids were esterified mainly to 1- and 2-position, respectively. Desaturation and chain length of fatty acids were influenced by the growth temperature. The variations in lipid and fatty acid compositions with the growth temperature are discussed in relation to the growth temperature-dependent shift of thermotropic phase transition temperature of the membrane lipids in the blue-green algae.  相似文献   

7.
Water binding capability and phase structures for different lipid species extracted from Acholeplasma laidlawii A membranes have been studied using deuteron nuclear magnetic resonance and low-angle X-ray diffraction.The dominating membrane lipids are monoglucosyldiglyceride and diglucosyldiglyceride and each of them takes up limited amounts of water (bound plus trapped), i.e., up to 13% (w/w), whereas the phospholipids and phosphoglycolipids have larger hydration capacities.Addition of magnesium and calcium ions, but not sodium ions, to the diglucosyldiglyceride increases the hydration capability. This increase is accompanied by the formation of a metastable liquid crystalline phase and a hysteresis effect for the transition temperature.Large differences in water deuteron quadrupole splitting were observed between mono- and diglucosyldiglyceride. Both 2H nuclear magnetic resonance and low-angle X-ray diffraction studies on lipids containing biosynthetically incorporated ω-d3-palmitic acid clearly indicate the existence of a reverse hexagonal phase structure for the monoglucosyldiglyceride and lamellar structures for the diglucosyldiglyceride and the other membrane lipids.The low hydration capability of the large diglucosyldiglyceride polar head is discussed in terms of polar head configuration.Both mono- and diglucosyldiglyceride have several physical properties similar to those of phosphatidylethanolamine.  相似文献   

8.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

9.
Razin, S. (University of Connecticut, Storrs), M. E. Tourtellotte, R. N. McElhaney, and J. D. Pollack. Influence of lipid components of Mycoplasma laidlawii membranes on osmotic fragility of cells. J. Bacteriol. 91:609-616. 1966.-Lipid composition of Mycoplasma laidlawii membranes could be significantly changed by variations in the growth medium. The effect of these changes on the osmotic fragility of the cells was studied. Cholesterol, incorporated into the membrane from the growth medium, had no significant effect on osmotic fragility. Carotenoids, synthesized by the cells from acetate, were likewise without effect. Unsaturated long-chain fatty acids increased markedly the resistance of M. laidlawii to osmotic lysis and promoted growth. The fatty acids of the growth medium were incorporated mainly into membrane phospholipids. The ratio between saturated and unsaturated fatty acids in membrane lipids depended on that of the growth medium.  相似文献   

10.
Adaptation of Mycoplasma gallisepticum, a sterol-requiring Mycoplasma sp., to growth in a serum-free medium supplemented with cholesterol in decreasing concentrations and with various saturated or unsaturated fatty acids enabled us to control both the cholesterol levels and the membrane fatty acid composition. An estimate of the membrane physical state from fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene indicated that the membrane lipids of native M. gallisepticum were highly ordered. Elongation of the saturated fatty acid chains from 14 to 18 carbon atoms caused only a small increase in the membrane lipid ordering, whereas the introduction of a cis double bond reduced it significantly. Lipid-phase transitions were observed in low-cholesterol-adapted organisms, whose membrane lipids were still highly ordered at the growth temperature.  相似文献   

11.
Blood fatty acids are an important parameter for the synthesis of brain myelin as exogenous stearic acid is needed: after subcutaneous injection to 18-day-old mice this labelled stearic acid is transported into brain myelin and incorporated into its lipids. However the acid is partly metabolized in the brain by elongation (thus providing very long chain fatty acids, mainly lignoceric acid) or by degradation to acetate units (utilized for synthesis of medium chain fatty acids as palmitic acid, and cholesterol). These metabolites are further incorporated into myelin lipids. The myelin lipid radioactivity increases up to 3 days; most of the activity is found in phospholipids; their fatty acids are labelled in saturated as well as in polyunsaturated homologues but sphingolipids, especially cerebrosides, contain also large amounts of radioactivity (which is mainly found in very long chain fatty acids, almost all in lignoceric acid). The occurrence of unesterified fatty acids must be pointed out, these molecules unlike other lipids, are found in constant amount (expressed in radioactivity per mg myelin lipid).  相似文献   

12.
A definite and characteristic relationship exists between growth temperature, fatty acid composition and the fluidity and physical state of the membrane lipids in wild type Bacillus stearothermophilus. As the environmental temperature is increased, the proportion of saturated fatty acids found in the membrane lipids is also markedly increased with a concomitant decrease in the proportion of unsaturated and branched chain fatty acids. The temperature range over which the gel to liquid-crystalline membrane lipid phase transition occurs is thereby shifted such that the upper boundary of this transition always lies near (and usually below) the temperature of growth. This organism thus possesses an effective and sensitive homeoviscous adaptation mechanism which maintains a relatively constant degree of membrane lipid fluidity over a wide range of environmental temperatures. A mutant of B. stearothermophilus which has lost the ability to increase the proportion of relatively high melting fatty acids in the membrane lipids, and thereby increase the phase transition temperature in response to increases in environmental temperature, is also unable to grow at higher temperatures. An effective homeoviscous regulatory mechanism thus appears to extend the growth temperature range of the wild type organism and may be an essential feature of adaptation to temperature extremes.Over most of their growth temperature ranges the membrane lipids of wild type and temperature-sensitive B. stearothermophilus cells exist entirely or nearly entirely in the liquid-crystalline state. Also, the temperature-sensitive mutant is capable of growth at temperatures well above those at which the membrane lipid gel to liquid-crystalline phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition upper boundary itself does not directly determine the maximum growth temperature of this organism. Similarly, the lower boundary does not determine the minimum growth temperature, since cell growth ceases at a temperature at which most of the membrane lipid still exists in a fluid state. These observations do not support the suggestion made in an earlier study, which utilized electron spin resonance spectroscopy to monitor membrane lipid lateral phase separations, that the minimum and maximum growth temperatures of this organism might be directly determined by the solid-fluid membrane lipid phase transition boundaries. Evidence is presented here that the electron spin resonance techniques used previously did not in fact detect the gel to liquid-crystalline phase transition of the bulk membrane lipids, which, however, can be reliably measured by differential thermal analysis.  相似文献   

13.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

14.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

15.
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology.  相似文献   

16.
In the presence of sublethal concentrations of phenol, 4-chlorophenol, and p-cresol in the growth medium, cells of Escherichia coli modified the fatty acid composition of their lipids. The result of these changes was an increase in the degree of saturation of lipids probably in order to compensate an increase of fluidity of the membrane induced by the phenols. Supplementation of the growth medium with saturated fatty acids could also enhance the degree of lipid saturation due to the incorporation of the acyl chains in the phospholipids. At the same time the growth of cells was less inhibited than in unsupplemented cells. The increase of tolerance of cells by manipulating the lipid composition indicates that the membrane structure plays a crucial role in the mode of action of phenols.  相似文献   

17.
The in vivo effects of ethanol on lipid synthesis in Escherichia coli have been examined. Under conditions which uncoupled fatty acid synthesis from phospholipid synthesis, ethanol decreased the amount of saturated fatty acids synthesized but had little effect on the selectivity of their incorporation into phospholipids. In the absence of fatty acid degradation and unsaturated fatty acid synthesis, E. coli was still able to adapt its membrane lipids to ethanol, while the inhibition of total fatty acid synthesis eliminated this response. During growth in the presence of ethanol, strain K1060 (an unsaturated fatty acid auxotroph) incorporated an increased amount of exogenous heptadecanoic acid (17:0) to compensate for the reduction in palmitic acid (16:0) available from biosynthesis. Thus, our results indicate that the reduced levels of saturated fatty acids observed in the phospholipids of E. coli following growth in the presence of ethanol result primarily from a decrease in the amounts of saturated fatty acids available for phospholipid synthesis.  相似文献   

18.
During the reproductive cycle of the female Labidura riparia, cytological observations show cyclical modifications of lipid droplets in the periovarian adipocyte. Fat body lipids and their constitutive fatty acids are analyzed. The lipids are predominantly triacylglycerols, which increase after adult ecdysis during vitellogenic and non-vitellogenic periods. Small amounts of diacylglycerols and phospholipids are found. Diacylglycerols increase during vitellogenesis and decrease during the non-vitellogenic period. Cytological modifications of lipid droplets are probably related to diacylglycerol fluctuations. Gas-liquid chromatography of fatty acid methyl esters shows oleic acid to be the predominant fatty acid in total lipids and triacylglycerols; unsaturated acids are approximately twice as abundant as saturated acids all along the reproductive cycle. Fatty acid composition of diacylglycerols and phospholipids differs from triacylglycerols and total lipids composition. Palmitic, stearic, oleic and linoleic acids represent the major fatty acids; their relative amounts vary during the different periods of the reproductive cycle. The correlations between fat body lipid changes and ovarian development were discussed and compared with observations made on other insect species. Accepted: 23 April 1997  相似文献   

19.
Summary In order to improve the economic value of lipids produced by the oleaginous yeast strain Apiotrichum curvatum ATCC 20509, a search was made for mutants defective in the conversion of stearic acid to oleic acid. Mutants could be selected as unsaturated fatty acid auxotrophs, since unsaturated fatty acids are essential componenets in membrane lipids. After treatment of A. curvatum wild-type with N-methyl-N-nitro-N-nitrosoguanidine, 58 fatty-acid-requiring mutants were isolated. On the basis of (1) the growth response to saturated and unsaturated fatty acids and (2) the fatty acid composition of lipids produced by these mutants, it was concluded that only 18 of them were real unsaturated fatty acid (Ufa) mutants, while the other 40 were designated as fatty acid synthetase (Fas) mutants. It is further shown that Ufa mutants of A. curvatum are able to produce high amounts of lipids consisting of more than 90% triacylglycerols with a percentage of saturated fatty acids resembling that of cocoa butter, when grown in the presence of relatively small amounts of oleic acid in the growth medium. This may offer an economically favourable alternative in comparison with other methods that have been developed for the production of cocoa butter equivalents by microorganisms.Offprint requests to: H. Smit  相似文献   

20.
The fatty acid patterns of Euonymus europaeus callus cultures and cell suspension cultures were analysed at the beginning of stationary growth phase and compared with those from the respective differentiated tissues. The lipid and fatty acid patterns in cell cultures differed remarkably from those in the tissues of the mother plant. No glycerol triacetate was detected in the callus cultures derived from differentiated tissues whereas in seeds this lipid compound amounts to 29%. In addition to fatty acids normally occurring in differentiated tissues, lipids in cultured cells also contained short-chain (C12–C14) as well as very long-chain fatty acids (C20–C24). In tissue culture cells the major fatty acids were found to be saturated, whereas in the mother cells unsaturated fatty acids were predominant. Palmitic acid is the most abundant fatty acid in most of the cultures. Lauric, myristic and palmitic acid amount to 50% in lipids of cell suspension cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号