首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorine-19 labeled compounds have been incorporated into lipids and proteins of Escherichia coli. 19F-Labeled membrane vesicles, prepared by growing a fatty acid auxotroph of a d-lactate dehydrogenase-deficient strain on 8,8-difluoromyristic acid, can be reconstituted for oxidase and transport activities by binding exogenous d-lactate dehydrogenase. 19F-Labeled d-lactate dehydrogenases prepared by addition of fluorotryptophans to a tryptophan-requiring strain are able to reconstitute d-lactate dehydrogenase-deficient membrane vesicles. Thus, lipid and protein can be labeled independently and used to investigate protein-lipid interactions in membranes.  相似文献   

2.
Germinating pea seedlings (Pisum sativum var. Alaska) contain high concentrations of d-alanine, which occurs in the decotyledonized parts as the conjugates, N-malonyl-d-alanine and γ-l-glutamyl-d-alanine. By contrast, free alanine in pea seedlings is almost all l-isomer. During early stages of the germination, γ-l-glutamyl-d-alanine increased significantly and amounted to ca. 2.5 μmol/seedling at 8 days.  相似文献   

3.
The amounts of d-alanine derivatives, γ-l-glutamyl-d-alanine and N-malonyl-d-alanine, increase rapidly during the early growth of pea seeds. Pyruvate-[1?14C], l-alanine-[U?14C], d-alanine-[U?14C], l-alanine-[15N] and 15NH4Cl were therefore fed to the seedlings and the incorporation investigated. Labelling results revealed that pea seedlings can utilize these erogenous compounds to form d-alanine and that labelled l-alanine is effectively converted to the d-enantiomer with retention of 14C and, largely, 15N label. Enzyme analyses in vitro provided additional evidence that the extract of pea seedlings catalyzes the direct conversion of l-alanine to d-alanine. The data suggest that the de novo synthesis of d-alanine in pea seedlings occurs by a racemase reaction.  相似文献   

4.
The enzymes d-galactose dehydrogenase and d-arabinose dehydrogenase were demonstrated to be applicable to the quantitative determination of d-galactose (and homologs) and d-arabinose (and homologs), respectively. The enzymic reactions were quite specific. When coupled with β-galactosidase, d-galactose dehydrogenase could be used in the quantitative determination of β-galactosides.  相似文献   

5.
A gene encoding a new d-2-hydroxyacid dehydrogenase (E.C. 1.1.1.) from the halophilic Archaeon Haloferax mediterranei has been sequenced, cloned and expressed in Escherichia coli cells with the inducible expression plasmid pET3a. The nucleotide sequence analysis showed an open reading frame of 927 bp which encodes a 308 amino acid protein. Multiple amino acid sequence alignments of the D-2-hydroxyacid dehydrogenase from H. mediterranei showed high homology with D-2-hydroxyacid dehydrogenases from different organisms and other enzymes of this family. Analysis of the amino acid sequence showed catalytic residues conserved in hydroxyacid dehydrogenases with d-stereospecificity. In the reductive reaction, the enzyme showed broad substrate specificity, although α-ketoisoleucine was the most favourable of all α-ketocarboxylic acids tested. Kinetic data revealed that this new D-2-hydroxyacid dehydrogenase from H. mediterranei exhibits dual coenzyme-specificity, using both NADPH and NADH as coenzymes. To date, all D-2-hydroxyacid dehydrogenases have been found to be NADH-dependent. Here, we report the first example of a D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity.  相似文献   

6.
d-Glucose decreases phosphate reabsorption in rat proximal tubule. It is also postulated that some amino acids interact with phosphate reabsorption. To investigate the mechanism of these interactions, phosphate, d-glucose and l-alanine transport kinetics were measured in brush border membrane vesicles isolated from superficial rat kidney cortex by the calcium precipitation technique. At pH 7.4, Na+-dependent phosphate transport was inhibited in the presence of either d-glucose (39 mM) or l-alanine (2.4 mM). In this model, with d-glucose or with l-alanine the V value of the phosphate uptake was decreased, whereas the apparent Km for the phosphate uptake was not affected. However, some inhibition of phosphate transport was observed in the presence of l-glucose, d-alanine or d-glucose after phlorizin preincubation. A 30% Na+-dependent l-alanine (0.1 mM) transport inhibition was observed in the presence of 5 mM phosphate. d-Glucose (1 mM) was also inhibited by 20% when 5 mM phosphate was added to incubation medium. According to several authors, in our model, d-glucose decreased the l-alanine transport and vice versa. Moreover, when the membrane potential was abolished, a clear inhibition of d-glucose by l-alanine persisted. These multiple interactions could be explained by the accelerated dissipation of the Na+ gradient insofar as the rate of the Na+ uptake was increased with d-glucose, l-alanine or phosphate and since the absence of variations in membrane potential did not suppress these inhibitions.  相似文献   

7.
An enzyme has been discovered in Escherichia coli that catalyzes the conversion of the triphosphate ester of 2-amino-4-hydroxy-6-(d-erythro-1′,2′,3′-trihydroxypropyl)-7,8-dihydropteridine, (i.e. d-erythro-dihydroneopterin triphosphate) to an epimer of this compound, l-threo-dihydroneopterin triphophate. The enzyme, which is here named “d-erythro-dihydroneopterin triphosphate 2′-epimerase,” needs a divalent cation (Mg2+ or Mn2+ is most effective) for maximal activity. Its molecular weight is estimated at 87 000–89 000. Little or no activity can be detected if either the monophosphate or the phosphate-free form of the substrate is incubated with the enzyme. Evidence is presented to establish that all three phosphate residues of the substrate are retained in the product and that the product is of the l-threo configuration.  相似文献   

8.
Arnaud Mourier 《BBA》2008,1777(10):1283-1288
Aerobically grown yeast cells express mitochondrial lactate dehydrogenases that localize to the mitochondrial inner membrane. The d-lactate dehydrogenase is a zinc-flavoprotein with high acceptor specificity for cytochrome c, that catalyzes the oxidation of d-lactate into pyruvate. In this paper, we show that mitochondrial respiratory rate in phosphorylating or non-phosphorylating conditions with d-lactate as substrate is stimulated by carboxylic acids. This stimulation does not affect the yield of oxidative phosphorylation. Furthermore, this stimulation lies at the level of the d-lactate dehydrogenase. It is non-competitive, hyperbolic and its dimension is directly related to the number of carboxylic groups on the activator. The physiological meaning of such a regulation is discussed.  相似文献   

9.
Nutritive effects of d-amino acids on the silkworm, Bombyx mori, were investigated by growth experiments using defined diets and also by analysis of free amino acids in the larval haemolymph. None of the d-forms of the usual ten essential amino acids could be utilized effectively, although d-methionine was utilized in lieu of the l-form only to a limited extent and d-histidine gave a positive but smaller effect than d-methionine. d-Proline, its l-form being semi-essential for the silkworm, was not utilized. d-Leucine, and to a lesser extent d-alanine and d-serine, were found to be somewhat toxic. Comparison of free amino acid patterns in the haemolymph of the fifth-instar larvae, which fed on diets either lacking l-forms of histidine, methionine and leucine singly or including the d-forms singly in place of these l-forms, supported the results of the growth experiments.  相似文献   

10.
Abrupt changes in the Arrhenius activation energy of membrane-bound enzymes have often been correlated with changes in the physical state of membrane phospholipids. Similar changes in activation energy have also been found in soluble enzymes. The possibility exists, therefore, that in some of the membrane-bound enzymes the changes might reflect intrinsic changes of the proteins independent of changes in the membrane phospholipids. This hypothesis was investigated using Drosophila mitochondria isolated from wild type and the mutant Ocdts-1. In this mutant it has been shown that succinate-cytochrome c reductase exhibits a change in Arrhenius activation energy at 18°C which is not found in the wild type (Sondergaard, L., Nielsen, N.C. and Smillie, R.M. (1975) FEBS lett. 50, 126–129). A quantitative thin-layer chromatographic analysis of mitochondrial phospholipids showed sphingomyelin to be more abundant in the wild type than in the mutant (5.2% and 4.3% of the total phospholipids, respectively). Since it was shown that the succinate-cytochrome c reductase had a lipid requirement for full activity, reciprocal rebinding experiments were done. These experiments showed that the reconstituted membranes exhibited the change in activation energy at 18°C only when the protein moiety came from mutant mitochondria, that is, the change was independent of the source of the phospholipids used.  相似文献   

11.
d-β-Hydroxybutyrate dehydrogenase of beef heart mitochondria is a lipid-requiring enzyme, bound to the inner membrane. The orientation of this enzyme in the membrane has been studied by comparing the characteristics of the enzyme in mitochondria and ‘inside-out’ submitochondrial vesicles. We observe that the enzymic activity is (1) latent in intact mitochondria; (2) relatively stable to trypsin digestion in mitochondria but rapidly inactivated in submitochondrial vesicles by this treatment; and (3) released more rapidly from submitochondrial vesicles by phospholipase A2 digestion than from mitochondria. Conclusive evidence that d-β-hydroxybutyrate dehydrogenase is localized on the matrix face of the mitochondrial inner membrane is provided by the correlation that the enzyme is released from submitochondrial vesicles before the membrane becomes leaky to cytochrome c. The arrangement of d-β-hydroxybutyrate dehydrogenase in the membrane is discussed within a generalized classification of the orientation of proteins in membranes. The evidence indicates that d-β-hydroxybutyrate dehydrogenase is an amphipathic molecule and as such is inlaid in the membrane, i.e. the enzyme is partially inserted into the hydrophobic milieu of the membrane, with the polar, functional end extending into the aqueous milieu.  相似文献   

12.
The binding of substrate and product analogs to phenylalanine ammonia-lyase (EC 4.3.1.5) from maize has been studied by a protection method. The ligand dissociation constants, KL, were estimated from the variation with [L] of the pseudo-first-order rate constants for enzyme inactivation by nitromethane. The phenylalanine analogs d- and l-2-aminooxy-3-phenylpropionic acid showed KL, values over 20,000-fold lower than the Km for l-phenylalanine. From these and other KL values it is deduced that when the enzyme binds l-phenylalanine the structural free energy stored in the protein is higher than when it binds the superinhibitors. Models for binding d- and l-phenylalanine and the superinhibitors are described. The enantiomeric pairs are considered to have similar KL values because they pack into the active site in a mirror-image relationship. If the elimination reaction approximates to the least-motion course deduced on stereoelectronic grounds, the mirror-image packing of the superinhibitors into the active site mimics the conformation inferred for a transition state in the elimination. It appears, therefore, that structural changes take place in the enzyme as the transition state conformation is approached causing stored free energy to be released. This lowers the activation free energy for the elimination reaction and accounts for the strong binding by the above analogs.  相似文献   

13.
Extracellular d-glucosyltransferases (GTase) and d-fructosyltransferases (FTase) were isolated from Streptococcus mutans IB (serotype c), B14 (e), and OMZ175 (f) by chromatofocusing, followed by hydroxyapatite column chromatography. The GTases isolated from serotypes c, e, and f are basic proteins (pI 7.4). The serotype c and e enzymes have two protein components having Mr 173 000 and 158 000 and the enzyme of the serotype f one component having Mr 156 000. The GTases of all the serotypes showed a Km value for sucrose of 10–14mm and an optimum pH 5.5–6.0 for enzyme activity, and their activities were enhanced by the presence of primer Dextran T10. The α-d-glucans synthesized by the purified GTases are water soluble and primarily consist of (1→6)-α-d-glucosidic linkage (41–66 mol/100 mol) and α-d-(1→3,6)-branch linkage (6–20 mol/100 mol), but significant proportions of α-d-(1→3), α-d-(1→4), and α-d-(1→3,4) linkages (11, 6, and 14 mol/100 mol, respectively) were detected in the serotype c α-d-glucan. The isolated FTases of the serotypes c, e, and f are acidic enzymes (pI 4.6) and consist of two components having Mr 84 000 and 76 000 for the serotype c enzyme, and 106 000 and 84 000 for the serotypes e and f enzymes, respectively. The Km value for sucrose was 6, 10, and 17mm for the serotypes c, e, and f enzymes, respectively, and the optimum pH of enzymic activity 5.5–6.0. Reactivity with Concanavalin A, susceptibility to acid hydrolysis, and paper chromatography of the hydrolyzates suggested that the water-soluble β-d-fructans synthesized by the purified FTases were of the inulin-type and had chemical structures somewhat different among the serotypes.  相似文献   

14.
The reaction of d-glucitol with acetone-zinc chloride gave a mixture of isopropylidene derivatives, from which the 2,3:5,6-diacetal (12) could be separated as its 1,4-dimesylate (13) or 1,4-ditosylate (14). The structure of 12 was proved by converting 14, via the 1-mono-iodide, into the known 1-deoxy-d-glucitol, and by mass-spectrometric investigation of the 1-deoxy-4-O-methyl diacetal. The terminally situated acetal group in 12 can be selectively hydrolyzed, and, on treatment with base, the 5,6-dihydroxy derivative obtained gives a d-galactitol 4,5-epoxide derivative.  相似文献   

15.
The kinetics of D-xylose transport were studied in Rhodotorula glutinis. Analysis of the saturation isotherm revealed the presence of at least two carriers for d-xylose in the Rhodotorula plasma membrane. These two carriers exhibited Km values differing by more than an order of magnitude. The low Km carrier was repressed in rapidly growing cells and depressed by starvation of the cells.Several hexoses were observed to inhibit d-xylose transport. In the studies reported here, the inhibitions produced by d-galactose and 2-deoxy-d-glucose were examined in some detail in order to define the interactions of these sugars with the d-xylose carriers. 2-Deoxy-d-glucose competitively inhibited both of the d-xylose carriers. In contrast, only the low-Km carrier was competitively inhibited by d-galactose.  相似文献   

16.
Four of the six electrophoretically distinguishable isoenzymes of the l-lactate dehydrogenase (EC 1.1.1.27) from potato tubers were purified from crude extracts. The isoenzymes are tetrameric and exhibit MWs around 145000. They are composed of mixtures of different subunits. Two of the isoenzymes together contain at least three, the other two together contain six different subunits indicating that the actual number of isoenzymes may be even greater than the number of electrophoretically detectable isoenzymes. Since the isoenzymes agree largely with respect to their enzymatic properties and to their primary structure as suggested from fingerprinting and amino acid analysis, it is suggested that the variation of the subunits is caused by proteolytic processing in vivo rather than by different genetic coding. The amino acid sequence of the substrate-binding region (Arg6 peptide) shows a high homology to that of the l-lactate dehydrogenases of animals and bacteria indicating a common origin of plant, animal and bacterial enzymes.  相似文献   

17.
The reactions of some 4,6-disulphonates of methyl 2,3-di-O-acyl-(and di-O-methyl)-d-glucopyranosides and -galactopyranosides, with thiocyanate, thioacetate, and thiobenzoate anions, have been studied under a variety of conditions. In the glucoside series, somewhat similar reactivity is shown by isomers differing only in anomeric configuration, and there is no very great difference between the reactivities of a 2,3-dibenzoate and its 2,3-di-O-methyl analogue. In contrast to the situation in the β-d-galactoside series, the presence of O-benzoyl groups in an α-d-galactoside does not have an unfavourable effect on displacement at C-4. Two hexose derivatives containing the novel 4,6-epithio bridge are described.  相似文献   

18.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

19.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

20.
2-O-Benzoyl-3,4,6-tri-O-benzyl-1-O-tosyl-d-mannopyranose and 2,3,4-tri-O- benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-d-glucopyranose were allowed to react with partially blocked 2-[4-(p-toluenesulfonamido)phenyl]ethyl α-d-manno- and -gluco-pyranosides. Disaccharides having α-d-Manp-(1→2)-α-D-Manp, α-d-manp-(1→6)-α-d-Manp, α-d-Manp-(1→6)-α-d-Manp, and α-d-Glcp-(1→6)-α-d-Manp structures, and a branched trisaccharide having the structure α-d-Manp-(1→2)-[α-d-Manp-(1→6)]-α-d-Manp were synthesized. The oligosaccharides were deblocked with sodium in liquid ammonia to give glycopyranosides having a free primary aromatic amine which were converted into isothiocyanate derivatives with thiophosgene. The functionalized oligosaccharides were then coupled to bovine serum albumin to give protein conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号