首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahymena cells elongated and desaturated massive supplements of palmitic or lauric acid at nearly twice the rates employed by unfed cells, thereby maintaining constant the physical properties of their membrane lipids. However, when a mixture of the 9- and 10-monomethoxy derivatives of stearic acid was administered, these compounds were incorporated without further metabolism. The marked fluidizing effect of the phospholipid-bound methoxy-fatty acids elicited an immediate reduction in fatty acid desaturase activity, the pattern of change being very similar to that induced by supplements of polyunsaturated fatty acids. The modulation of fatty acid desaturase activity by methoxy-acids clearly seems to be governed by membrane fluidity rather than by some form of end product inhibition of the type which might have been postulated to explain the similar effect caused by polyunsaturated fatty acids.  相似文献   

2.
We have cloned a Caenorhabditis elegans cDNA encoding a Delta12 fatty acid desaturase and demonstrated its activity by heterologous expression in Saccharomyces cerevisiae. The predicted protein is highly homologous both to the cloned plant genes with similar function and to the published sequence of the C. elegans omega-3 fatty acid desaturase. In addition, it conforms to the structural constraints expected of a membrane-bound fatty acid desaturase including the canonical histidine-rich regions. This is the first report of a cloned animal Delta(12) desaturase gene. Expression of this cDNA in yeast resulted in the accumulation of 16:2 and 18:2 (linoleic) acids. The increase of membrane fluidity brought about by this change in unsaturation was measured. The production of polyunsaturated fatty acids in yeast cells and the concomitant increase in membrane fluidity was correlated with a modest increase in growth rate at low temperature and with increased resistance to ethanol and oxidative stress.  相似文献   

3.
ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54–65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.  相似文献   

4.
5.
Research on fatty acid metabolism in cultured human larynx tumor cells Hep2 was carried out.The cells were incubated with either a saturated (palmitic) or a polyunsaturated (linoleic, alpha-linolenic and eicosatrienoic (n-6)) radioactive fatty acid (0.66 pM, 24 h). The best incorporation capacity was observed in the linoleic acid followed by alpha-linolenic, palmitic and eicosatrienoic acids. All fatty acids tested were anabolized to higher derivatives within their own family. Palmitic acid was primarily monodesaturated rather than elongated, proving to have a very active A9 desaturase activity.With respect to polyunsaturated acid metabolism, the conversion of alpha-linolenic acid to higher homologs, although better than linoleic acid, occurred far less efficiently than that observed in other non-highly undifferentiated human tumor cells. This impairment in higher polyunsaturated fatty acid biosynthesis, reflected in the low levels of arachidonic acid in the fatty acid composition, would not reside in the A5 desaturation step since Hep2 cells can readily convert eicosatrienoic acid into arachidonic acid. Considering the potential regulatory role of specific polyunsaturated fatty acids in the cell proliferative control, the knowledge of the metabolism of fatty acids in this human tumor cell would be important for designing future experiments in order to clarify the mechanism involved in balance, proliferation and cell death.  相似文献   

6.
1. The incorporation and metabolism of (n-3) and (n-6) polyunsaturated fatty acids (PUFA) supplemented to growing cultures were studied in rainbow trout (RTG-2) and turbot (TF) cell lines. 2. A fatty acid concentration of 20 microM considerably altered the fatty acid composition of the cells without affecting lipid class composition or the appearance of cytoplasmic lipid droplets. 3. Both cell lines exhibited considerable delta 6 desaturase activities. 4. Whereas delta 5 desaturase activity was expressed in RTG-2 cells, delta 4 desaturase activity was absent and, conversely, delta 4 desaturase activity was expressed in TF cells, but there was an apparent deficiency in the C18 to C20 elongase multi-enzyme complex. 5. The delta 6 desaturase activity in both cell lines showed little preference between 18:2(n-6) and 18:3(n-3) but the delta 5 desaturase activity of RTG-2 cells and the delta 4 desaturase activity of TF cells showed a preference for (n-3)PUFA. 6. Two fish oil concentrates were assessed for their ability to generate fatty acid compositions in the cell lines more closely resembling those of intact fish tissues.  相似文献   

7.
The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by elevated amounts of palmitic acid and a decreased amount of unsaturated 16-carbon fatty acids as a consequence of a single nuclear mutation. Quantitative analysis of the fatty acid composition of individual lipids suggested that the mutant is deficient in the activity of a chloroplast ω9 fatty acid desaturase which normally introduces a double bond in 16-carbon acyl chains esterified to monogalactosyldiacylglycerol (MGD). The mutant exhibited an increased ratio of 18- to 16-carbon fatty acids in MGD due to a change in the relative contribution of the prokaryotic and eukaryotic pathways of lipid biosynthesis. This appears to be a regulated response to the loss of chloroplast ω9 desaturase and presumably reflects a requirement for polyunsaturated fatty acids for the normal assembly of chloroplast membranes. The reduction in mass of prokaryotic MGD species involved both a reduction in synthesis of MGD by the prokaryotic pathway and increased turnover of MGD molecular species which contain 16:0.  相似文献   

8.
Isochrysis galbana, produces long chain polyunsaturated fatty acids including docosahexaenoic acid (DHA, 22:6n-3). A novel gene (IgFAD4-2), encoding a C22-?4 polyunsaturated fatty acid specific desaturase, has been isolated and characterized from I. galbana. A full-length cDNA of 1,302?bp was cloned by LA-PCR technique. The IgFAD4-2 encoded a protein of 433 amino acids that shares 78?% identity with a previously reported ?4-desaturase (IgFAD4-1) from I. galbana. The function of IgFAD4-2 was deduced by its heterologous expression in Saccharomyces cerevisiae, which then desaturated docosapentaenoic acid (DPA, 22:5n-3) to DHA. The conversion ratio of DPA to DHA was 34?%, which is higher than other ?4-desaturases cloned from algae. However, IgFAD4-2 did not catalyze the desaturation or elongation reactions with other fatty acids. These results confirm that IgFAD4-2 has C22-?4-PUFAs-specific desaturase activity.  相似文献   

9.
Livestock meat is generally low in n-3 polyunsaturated fatty acids (PUFAs), which are beneficial to human health. An alternative approach to increasing the levels of n-3 PUFAs in meat is to generate transgenic livestock animals. In this study, we describe the generation of cloned pigs that express the cbr-fat-1 gene from Caenorhabditis briggsae, encoding an n-3 fatty acid desaturase. Analysis of fatty acids demonstrated that the cbr-fat-1 transgenic pigs produced high levels of n-3 fatty acids from n-6 analogs; consequently, a significantly reduced ratio of n-6/n-3 fatty acids was observed. We demonstrated that the n-3 desaturase gene from C. briggsae was functionally expressed, and had a significant effect on the fatty acid composition of the transgenic pigs, which may allow the production of pork enriched in n-3 PUFAs.  相似文献   

10.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

11.
Saccharomyces cerevisiae shows great potential for development of bioreactor systems geared toward the production of high-value lipids such as polyunsaturated omega-3 fatty acids, the yields of which are largely dependent on the activity of ectopically expressed enzymes. Here, we show that the addition of an N-terminal epitope tag sequence (either Myc or hemagglutinin) to oleate desaturase (FAD2) or omega-3 linoleate desaturase (FAD3) enzymes from plants, which catalyze consecutive reactions in the production of long chain omega-3 fatty acids, significantly increases their activity up to fourfold when expressed in yeast cells. Quantitative protein blotting using an antibody specific for native FAD2 revealed that the steady-state amount of the epitope-tagged FAD2 protein was also approximately fourfold higher than that of its untagged counterpart, demonstrating a direct relationship between the epitope tag-induced increase in enzyme amount and fatty acid product formation. Protein half-life and RNA blotting experiments indicated that the half-lives and mRNA content of the tagged and untagged FAD2 proteins were essentially the same, suggesting that the epitope tags increased protein abundance by improving translational efficiency. Taken together, these results indicate that the addition of an epitope tag sequence to a plant fatty acid desaturase (FAD) not only provides a useful means for protein immunodetection using highly specific, commercially available antibodies, but that it also significantly increases FAD activity and the production of polyunsaturated fatty acids in yeast cells.  相似文献   

12.
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.  相似文献   

13.
The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low.  相似文献   

14.
Due to increasing demand for natural sources of both polyunsaturated fatty acids (PUFAs) and beta-carotene, 28 Zygomycetes fungal soil isolates were screened for their potential to synthesize these biologically active compounds. Although all fungi produced C18 PUFAs, only nine strains also formed beta-carotene. Although Actinomucor elegans CCF 3218 was the best producer of gamma-linolenic acid (GLA) (251 mg/L), Umbelopsis isabellina CCF 2412 was found to be the most valuable fungus because of the dual production of GLA (217 mg/L) and beta-carotene (40.7 mg/L). The calculated ratio of formed PUFAs provided new insight into activities of individual fatty acid desaturases involved in biosynthetic pathways for various types of PUFAs. The maximal activity of delta-9 desaturase was accompanied by high accumulation of storage lipids in fungal cells. On the other hand, maximal activity of delta-15 desaturase was found in strains synthesizing low amounts of oleic acid due to diminished delta-9 desaturase. Activities of delta-6 desaturase showed competition for fatty acids engaged in n3, n6, and n9 biosynthetic pathways. Such knowledge about fatty acid desaturase activities provides new challenges for the regulation of biotechnological production of PUFAs by Zygomycetes fungi.  相似文献   

15.
16.
1. Dietary orotate produced a decrease in total plasma fatty acids which was reflected in low values of saturated, monounsaturated and polyunsaturated fatty acids longer than 18 carbon atoms of the n-6 series. The relative content of saturated fatty acids in microsomes of animals fed orotate was also decreased. 2. Rat liver delta-9 desaturase activity was lower in the group fed orotate. However, delta-6 desaturase activity did not show significant differences between the groups. 3. Microsomal cholesterol content was lower in rats fed orotate than in controls but phospholipid phosphorus contents were similar. These results suggest a direct effect of dietary orotate on the key enzymes which regulates cholesterol liver metabolism.  相似文献   

17.
To make dihomo-γ-linolenic acid (DGLA) (20:3n-6) in Saccharomyces cerevisiae, we introduced Kluyveromyces lactis Δ12 fatty acid desaturase, rat Δ6 fatty acid desaturase, and rat elongase genes. Because Fad2p is able to convert the endogenous oleic acid to linoleic acid, this allowed DGLA biosynthesis without the need to supply exogenous fatty acids on the media. Medium composition, cultivation temperature, and incubation time were examined to improve the yield of DGLA. Fatty acid content was increased by changing the medium from a standard synthetic dropout medium to a nitrogen-limited minimal medium (NSD). Production of DGLA was higher in the cells grown at 15°C than in those grown at 20°C, and no DGLA production was observed in the cells grown at 30°C. In NSD at 15°C, fatty acid content increased up until day 7 and decreased after day 10. When the cells were grown in NSD for 7 days at 15°C, the yield of DGLA reached 2.19 μg/mg of cells (dry weight) and the composition of DGLA to total fatty acids was 2.74%. To our knowledge, this is the first report describing the production of polyunsaturated fatty acids in S. cerevisiae without supplying the exogenous fatty acids.  相似文献   

18.
Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.  相似文献   

19.
The temperature of C. japonica cultivation influences the lipid content and composition of acyl chains, especially the content of such polyunsaturated acids as linoleic and linolenic. Thermal adaptation is accompanied by the modulation of fatty acid isomeric composition and acyl chain length and, at low temperatures, promotes the appearance of fatty acids uncommon to the fungus, in particular, arachidonic acid. The changes occur on a background of significant alterations in the fungus metabolism (in glucose uptake, ATP content, economic coefficient value, etc.). In experiments on the inhibition of translation with cycloheximide, abrupt temperature change (supraoptimal to cold) did not lead to desaturase de novo synthesis, but rather stimulated the activity of the named enzymes, except for palmitoleoyl-CoA desaturase. In the process of temperature adaptation, polar lipid microviscosity modulating compounds influenced fatty acid acyl chain composition. Microviscosity differences between polar and neutral lipids and correlation to the degree of fatty acid unsaturation during temperature fluctuation were established.  相似文献   

20.
The mammalian Δ6-desaturase coded by fatty acid desaturase 2 (FADS2; HSA11q12-q13.1) catalyzes the first and rate-limiting step for the biosynthesis of long-chain polyunsaturated fatty acids. FADS2 is known to act on at least five substrates, and we hypothesized that the FADS2 gene product would have Δ8-desaturase activity. Saccharomyces cerevisiae transformed with a FADS2 construct from baboon neonate liver cDNA gained the function to desaturate 11,14-eicosadienoic acid (20:2n-6) and 11,14,17-eicosatrienoic acid (20:3n-3) to yield 20:3n-6 and 20:4n-3, respectively. Competition experiments indicate that Δ8-desaturation favors activity toward 20:3n-3 over 20:2n-6 by 3-fold. Similar experiments show that Δ6-desaturase activity is favored over Δ8-desaturase activity by 7-fold and 23-fold for n-6 (18:2n-6 vs 20:2n-6) and n-3 (18:3n-3 vs 20:3n-3), respectively. In mammals, 20:3n-6 is the immediate precursor of prostaglandin E1 and thromboxane B1. 20:3n-6 and 20:4n-3 are also immediate precursors of long-chain polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid, respectively. These findings provide unequivocal molecular evidence for a novel alternative biosynthetic route to long-chain polyunsaturated fatty acids in mammals from substrates previously considered to be dead-end products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号