首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), an unusual branched chain fatty acid thought to disrupt the hydrophobic regions of membranes, can be incorporated into the lipids of growing Neurospora cultures. The phytanic acid must be supplied in a water soluble form, esterified to a Tween detergent (Tween-Phytanic). This fatty acid and its oxidation product, pristanic acid, were found in both the phospholipid and neutral lipid fractions of Neurospora. In phospholipids of the wild-type strain, phytanic acid was present to the extent of 4 to 5 moles percent of the fatty acids and pristanic acid, about 41 moles percent. The neutral lipids contained 42 and 4 moles percent of phytanic and pristanic acids respectively. By employing a fatty acid-requiring mutant strain (cel?), the phytanic acid level was raised to a maximum of 16 moles percent in the phospholipids and to 63 moles percent in the neutral lipids. Under this condition, the level of pristanic acid was reduced to about 6 moles percent in phospholipids and 1 mole percent in the neutral lipids. The phytanic acid levels could not be further elevated by increased supplementation with phytanic acid or by a change in the growth temperature. In strains with a high phytanic acid content, the complete fatty acid distribution of the phospholipids and neutral lipids was determined. In the neutral lipids, phytanic acid appeared to replace the 18 carbon fatty acids, particularly linoleic acid. The presence of phytanic acid in the phospholipids was confirmed by mass spectrometry, and by the isolation of a phospholipid fraction containing this fatty acid via silicic acid column chromatography. Most of the phytanic acid in phospholipids appeared to be in phosphatidylethanolamine, and 2 lines of evidence suggest that it was esterified to both positions of this molecule. In the fatty acid-requiring mutant strain (cel?), the replacement by phytanic acid of 10 to 15% of the fatty acids in the phospholipid produced an aberrant morphological change in the growth pattern of Neurospora and caused this organism to be osmotically more fragile than the wild-type strain. The lack of noticeable effect of the high levels of pristanic acid in the phospholipids suggests that it is not just the presence of the methyl groups in a branched chain fatty acid which leads to the altered membrane function in this organism.  相似文献   

2.
Mechanisms of proton/hydroxide conductance (GH/OH) were investigated in planar (Mueller-Rudin) bilayer membranes made from decane solutions of phospholipids or phospholipids plus phytanic acid (a 20-carbon, branched chain fatty acid). At neutral pH, membranes made from diphytanoylphosphatidylcholine or bacterial phosphatidylethanolamine had GH/OH values in the range of (2-5) X 10(-9) S X cm-2, corresponding to H+/OH- 'net' permeabilities of about (0.4-1.0) X 10(-5) cm X s-1. GH/OH was inhibited by serum albumin, phloretin, glycerol and low pH, but was increased by chlorodecane and voltage greater than 80 mV. Water permeability and GH/OH were not correlated, suggesting that water and H+/OH- cross the membrane by separate pathways. Addition of phytanic acid to the phospholipids caused an increase in GH/OH which was proportional to the first power of the phytanic acid concentration. In membranes containing phytanic acid, GH/OH was inhibited by albumin, phloretin, glycerol and low pH, but was increased by chlorodecane and voltages greater than 80 mV. The results suggest that phytanic acid acts as a simple (A- type) proton carrier. The qualitative similarities between the behavior of GH/OH in unmodified and phytanic-acid containing membranes suggest that phospholipids may contain weakly acidic contaminants which cause most of GH/OH at pH greater than 4. However, there is also a significant background (pH independent) GH/OH which may be due to hydrogen-bonded water chains. The ability of phytanic acid to act as a proton carrier may help to explain the toxicity of phytanic acid in Refsum's disease, a metabolic disorder in which phytanic acid accumulates to high levels in plasma, cells and tissues.  相似文献   

3.
A rapid gas chromatographic method to determine phytanic acid in plasma from Refsum's disease is described. After a brief alkaline hydrolysis of lipids, the biological sample is directly injected into a glass pre-column; an acid carrier gas (formic acid in nitrogen) is used to displace the long-chain fatty acids from their sodium salts and from their binding to proteins. Formic acid introduced through the column may also be used as a reagent gas for chemical ionization in combined gas chromatography—mass spectrometry; fatty acids (C1 to C16:2 and phytanic acid) are easily identified by their M + 1 (base peak) and M − 17 peaks. The described procedure is also suitable for studying normal fatty acids from plasma lipids.  相似文献   

4.
Summary Mechanisms of proton conductance (G H) were investigated in phospholipid bilayer membranes containing long-chain fatty acids (lauric, myristic, palmitic, oleic or phytanic). Membranes were formed from diphytanoyl phosphatidylcholine in decane plus chlorodecane (usually 30% vol/vol). Fatty acids were added either to the aqueous phase or to the membrane-forming solution. Proton conductance was calculated from the steadystate total conductance and the H+ diffusion potential produced by a transmembrane pH gradient. Fatty acids causedG H to increase in proportion to the first power of the fatty acid concentration. TheG H induced by fatty acids was inhibited by phloretin, low pH and serum albumin.G H was increased by chlorodecane, and the voltage dependence ofG H was superlinear. The results suggest that fatty acids act as simple (A type) proton carriers. The membrane: water partition coefficient (K p ) and adsorption coefficient () were estimated by finding the membrane and aqueous fatty acid concentrations which gave identical values ofG H. For palmitic and oleic acidsK p was about 105 and was about 10–2 cm. The A translocation or flip-flop rate (k a ) was estimated from the value ofG H and the fatty acid concentration in the membrane, assuming that A translocation was the rate limiting step in H+ transport. Thek A 's were about 10–4 sec–1, slower than classical weak-acid uncouplers by a factor of 105. Although long-chain fatty acids are relatively inefficient H+ carriers, they may cause significant biological H+ conductance when present in the membrane at high concentrations, e.g., in ischemia, hypoxia, hormonally induced lipolysis, or certain hereditary disorders, e.g., Refsum's (phytanic acid storage) disease.  相似文献   

5.
The alpha-tocopherol content and fatty acid composition of lipids in various types of nervous tissue membranes were studied. The transbilayer distribution of alpha-tocopherol and polyunsaturated fatty acids in liposomes and plasma membranes of synaptosomes was examined. It was shown that both phosphatidylethanolamine and phosphatidylserine are localized predominantly in the inner monolayer and they contain the bulk of polyenoic fatty acid residues. alpha-Tocopherol incorporated into liposomes from synaptosome plasma membrane lipids and present in synaptosome plasma membranes is also predominantly localized in the inner monolayers. No asymmetrical distribution of incorporated alpha-tocopherol was observed in liposomes prepared from a single phospholipid, e.g., dioleoylphosphatidylcholine.  相似文献   

6.
Differential scanning calorimetry (DSC) was used to examine the relationship of the gel to liquid-crystalline phase transition of lipids to fatty acid composition with membrane lipids and spheroplast membranes isolated from cells of a wild strain and an unsaturated fatty acid auxotroph of Escherichia coli grown under various conditions. These lipids and membranes underwent thermotropic phase transitions at different temperatures depending on the thermal properties of their constituent fatty acids. The lipid phase transition occurred at higher temperatures in biomembranes than in extracted lipids. DSC thermograms of lipids synthesized by bacterial cells which were observed at a temperature scanning rate as slow as 0.3 K min-1 were characterized by a distinctly plain peak summit. Endothermic peaks given by samples derived from elaidic acid-enriched cells were relatively narrow and asymmetric. The discrepancy between the transition temperatures measured with extracted lipids and with membraneous fractions, and the shape of the endothermic peaks, are discussed.  相似文献   

7.
A monounsaturated and a triunsaturated form of phytanic acid (3,7,11,15-tetramethylhexacosanoate) were isolated from plasma lipids of a patient with Refsum disease. Both were converted to their methyl esters, oxidized to polyhydroxy acids by treatment with OsO4 and converted to their vicinal trimethylsilyl ethers. These derivatives were analyzed by gas chromatography-mass spectrometry using both electron impact ionization (at 21 and 70 eV) and chemical ionization conditions to obtain clear evidence to establish the structure of the monounsaturated form of phytanic acid as 3,7,11,15-tetramethylhexadec-15-monoenoic acid and that of the triunsaturated form of phytanic acid as 3,7,11,15-tetramethylhexadec-6,10,14-trienoic acid. The possible metabolic and dietary sources for these novel fatty acids are discussed.  相似文献   

8.
9.
Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth, and this formation occurs concurrently with a 60% increase in cellular lipid. The present study was initiated to determine whether this newly synthesized lipid differed from that extracted before intracytoplasmic membrane synthesis. Undifferentiated exponential-phase cells were found to contain 30% phosphatidylcholine, 27.1% caridolipin, 25% phosphatidylethanolamine, 12.5% phosphatidylglycerol, 0.4% phosphatidic acid, 0.2% phosphatidylserine, and four additional unidentified lipids totaling less than 5%. The only change detected after formation of intracytoplasmic membranes was a slight decrease in phosphatidylethanolamine and a corresponding increase in phosphatidylcholine. An examination of lipid hydrolysates revealed 11 different fatty acids in the lipids from each cell type. Hexadecanoic acid and monounsaturated octadecenoic accounted for more than 75% of the total fatty acids for both cell types. Proportional changes were noted in all fatty acids except octadecenoate. Anteiso-pentadecanoate comprised less than 1% of the fatty acids from undifferentiated cells but more than 13% of the total fatty acids from cells containing intracytoplasmic membranes. These results suggest that anteiso-pentadecanoate formation closely parallels the formation of intracytoplasmic membranes. Increased concentrations of this fatty acid may contribute to the fluidity necessary for plasma membrane convolution during intracytoplasmic membrane development.  相似文献   

10.
In Acholeplasma laidlawii A, strain EF 22, the relative amounts of the membrane polar lipids vary as a consequence of different fatty acid supplements to the growth medium. The number of lipid species also varies; a new apolar monoglucolipid containing four fatty acid residues was present only when saturated fatty acids dominated in the growth medium. A new phosphoglucolipid, probably with a glycerophosphoryl-monoglucosyldiglyceride structure, was also found. The most pronounced variations occurred between the two dominating glucolipids, monoglucosyldiglyceride and diglucosyldiglyceride; the former being found in larger amounts when a saturated or a trans-unsaturated fatty acid was present in the medium. The amount of diglucosyldiglyceride decreased accordingly. A qualitative relationship between fatty acid properties and membrane lipid variations was established over a wide fatty acid concentration range. Incorporation of supplied fatty acids reached higher levels than normally found in other acholeplasmas. The ratio between membrane protein and lipids exhibited significant and coherent variations during growth and was to some extent influenced by the fatty acids in the medium. These changes indicate variations in lipid-protein organization in the membranes during growth.  相似文献   

11.
The renewal of fatty acids in the visual cells and pigment epithelium of the frog retina was studied by autoradiographic analysis of animals injected with tritiated palmitic, stearic, or arachidonic acids. Most of the radioactive material could be extracted from the retina with chloroform-methanol, indicating that the fatty acids had been esterified in lipids. Analysis of the extracts, after injection of [3H]palmitic acid, revealed that the radioactivity was predominantly in phospholipid. Palmitic acid was initially concentrated in the pigment epithelium, particularly in oil droplets which are storage sites for vitamin A esterified with fatty acid. The cytoplasm, but not the nucleus of these cells, was also heavily labeled. Radioactive fatty acid was bound immediately to the visual cell outer segment membranes, including detached rod membranes which had been phagocytized by the pigment epithelium. This is believed to be due to fatty acid exchange in phospholipid molecules already situated in the membranes. Gradually, the concentration of radioactive material in the visual cell outer segment membranes increased, apparently as a result of the addition of new phospholipid molecules, possibly augmented by the transfer from the pigment epithelium of esterified vitamin A. Injected fatty acid became particularly concentrated in new membranes which are continually assembled at the base of rod outer segments. This localized concentration was short-lived, apparently due to the rapid renewal of fatty acid. The results support the conclusion that rods renew the lipids of their outer segments by membrane replacement, whereas both rods and cones renew the membrane lipids by molecular replacement, including fatty acid exchange and replacement of phospholipid molecules in existing membranes.  相似文献   

12.
We have extracted polar lipids and waxes from isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum and determined the fatty acid composition of each lipid class. Polar lipids amounted to 4.8 mol per 100 mol bacteriochlorophyll in the chlorosomes, while non-polar lipids (waxes) were present at a ratio of 5.9 mol per 100 mol bacteriochlorophyll. Glycolipids constitute 60 % of the polar lipids while phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and an aminoglycosphingolipid make up respectively 15, 3, 8 and 12 %. A novel glycolipid was identified as a rhamnose derivative of monogalactosyldiacylglycerol, while the other major glycolipid was monogalactosyldiacylglycerol. Tetradecanoic acid was the major fatty acid in the aminoglycosphingolipid, while the other polar lipids contained predominantly hexandecanoic acid. The chlorosome waxes are esters of unbranched fatty acids and fatty alcohols with 14 or 16 carbon atoms, joined to form molecules with between 28 and 32 carbon atoms. The stoichiometry between lipids and bacteriochlorophyll suggests that much of the chlorosome surface is covered by protein.  相似文献   

13.
We studied the oxidation of [1-14C]phytanic acid, 3-methyl substituted fatty acid, to pristanic acid and 14CO2 in human skin fibroblasts. The specific activity for α-oxidation of phytanic acid in peroxisomes was 29- and 124-fold higher than mitochondria and endoplasmic reticulum. This finding demonstrates for the first time the presence of fatty acid α-oxidation enzyme system in peroxisomes.  相似文献   

14.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

15.
Neuroblastoma x glioma cells NG108-15 were cultured in lipid-free medium supplemented with fatty acids of various chain length and unsaturation. Binding of 3H-labelled [DAla2]-[Dleu5]-enkephalin by membranes of cells grown in saturation fatty acids of different chain length was not significantly different from that of the control. On the other hand, a proportional decrease of binding capacity with no change in residual receptor affinity was noticed when cells were cultured in medium containing fatty acids of increasing unsaturation. This decrease was time dependent and reached a maximum at about 48 h. Binding of [3H]dihydromorphine and [3H]naloxone was similarly affected. In contrast, when membranes of cells grown in normal medium were preincubated up to 3 h with unsaturated fatty acid and tested for opioid binding, no significant reduction was observed. Examination of the fatty acid composition of phospholipid from cells grown in linolenate indicated that a significant alteration of the acyl composition has occurred. To wval;uate the underlying cause of this type of inhibition, the effect of linolenic acid on cell growth and protein synthesis was examined. When cells were cultured in 100 μM of this fatty acid, both growth and protein synthesis were retarded by 28% and 19%, respectively. Since opiate receptors are proteineous in nature, a reduction of protein synthesis may partially account for the loss of opioid binding activity. On the other hand, an increase of membrane fluidity is known to affect a number of cellular functions, including ligan-receptor recognition. Whether this can offer a satisfactory explanation for our obervations remains to be established.  相似文献   

16.
The cytoplasmic and outer membranes containing either trans9-octadecenoate, trans9-hexadecenoate or cis9-octadecenoate as predominant unsaturated fatty acid residues in the phospholipids were prepared from a fatty acid auxotroph, Escherichia coli strain K1062. Order-disorder transitions of the phospholipids were revealed in both fractions of the cell envelope by fluorescent probing or wide angle X-ray diffraction. The mid-transition temperatures, Tt, and the range of the transition, ΔT, are similar in the outer and cytoplasmic membrane. Relative to the corresponding extracted lipids, 60–80% of the hydrocarbon chains take part in the transition in the cytoplasmic membrane whereas in the outer membrane only 25–40% of the chains become ordered. The results suggest that in the outer membrane part of the lipids form fluid domains in the form of mono- and/or bilayers.  相似文献   

17.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

18.
The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids. We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).  相似文献   

19.
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the “collodion baby” in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

20.
The thermotropic behaviour of fatty acid-homogeneous membranes of Acholeplasma laidlawii B was investigated by Fourier transform infrared spectroscopy. The organism was grown at 37°C in the presence of avidin, an inhibitor of fatty acid synthesis, in a medium supplemented with pentadecanoic acid-d29; the enrichment of the membranes with this fatty acid was 95%. The temperature-dependent phase behaviour of the membranes was studied via the C–D stretching vibrational modes of the membrane lipids and was compared with that of the lipid extract. The high level of fatty acid homogeneity results in a sharp (for natural membranes) gel to liquid crystalline phase transition. The transition, in both the membranes and extracted lipids, is centered at about 6°C above the growth temperature. During the transition two principal liquid states are evident, one being more conformationally ordered than the other. The effect of proteins on the principal lipid phase transition is minimal. However, in the intact membranes there is evident a weaker, lower temperature transition, which is not evident in the extracted lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号