首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Light-induced redox changes of cytochrome b-559   总被引:2,自引:0,他引:2  
Dark incubation of spinach or pea chloroplasts with 10 μm carbonylcyanide m-chlorophenylhydrazone (CCCP) had a negligible effect either on the redox state or the redox potential of the high potential form of cytochrome b-559 (cytochrome b-559hp). A similar result was obtained with spinach chloroplasts on incubation with 3.3 μm carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), but pea chloroplasts showed a decrease of 10–20% in the amount of reduced cytochrome b-559.Light-induced redox changes of cytochrome b-559 were not observed in untreated spinach chloroplasts. In the presence of CCP or FCCP, cytochrome b-559 was photooxidized both in 655 nm actinic light and in far-red light. Addition of the plastoquinone antagonist, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to CCCP- or FCCP-treated chloroplasts had only a small effect on the photooxidation of cytochrome b-559 in 655 light, but it completely inhibited the oxidation in far-red light.Electron flow from water to 2,3′,6-trichlorophenolindophenol was partly inhibited by CCCP or FCCP, but the degree of inhibition does not appear to be sufficient to account for the photooxidation of cytochrome b-559.The photooxidation of cytochrome b-559 by 655 nm light at liquid nitrogen temperature was not influenced by prior treatment of the chloroplasts at room temperature with CCCP, DBMIB, or CCCP + DBMIB.The results cannot be explained by the presence of two independent pools of cytochrome b-559 in CCCP-treated chloroplasts, one photooxidized by Photosystem II and the other photooxidized by Photosystem I and photoreduced by Photosystem II.  相似文献   

2.
Oxidation-reduction titrations of several electron carriers found in chloroplast Photosystem I fragments have been performed. The midpoint potential of P700 in these fragments and in chloroplasts has been found to be +520 mV by optical absorbance methods or electron paramagnetic resonance spectroscopy. The copper-containing protein plastocyanin is present in Photosystem I fragments and has a midpoint potential of +320 mV, significantly less positive than the midpoint potential of cytochrome f in the same fragments, which was measured to be +375 mV. Photo-system I fragments contain two b cytochromes, a low-potential form of cytochrome b559 (Em = +110 mV) and cytochrome b563 (Em = ?100 mV).  相似文献   

3.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

4.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

5.
Acidification of chloroplasts in the dark causes a decrease in the ability of ferrocyanide to reduce the oxidized cytochrome, which is reversible upon raising the pH. This effect is inhibited if 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is added to the medium before acidification. DCMU inhibition of the loss of ferrocyanide reduction at pH 5.0 occurs at low DCMU concentrations, half-inhibition requiring 1 DCMU:400 chlorophyll molecules under conditions where half-inhibition of oxygen evolution requires the addition of 1 DCMU: 100 chlorophylls. Potentiometric titration shows that the midpoint potential of “high potential” cytochrome b-559 is +395 mV at pH 7.8, +335 mV at pH 5.0, and in the presence of DCMU +380 mV at pH 5.O. The ability of low concentrations of DCMU to exert a specific effect on a property associated with “high potential” cytochrome b-559 implies that this cytochrome, which is known to be in close structural proximity to the reduction center of photosystem II, is a principle site of action of DCMU.  相似文献   

6.
《BBA》1985,806(3):366-373
Two phases of the electrochromic 515 nm absorption change in chloroplasts elicited by microsecond flashes can be resolved kinetically. Redox-potentiometric titrations indicate that the initial amplitude appearing within 0.5 ms, and designated as phase a, has three components in the low-potential region with Em7.5 values of +60 mV, −195 mV and less than −400 mV. From the insensitivity to DCMU, we propose that the species with Em7.5 values of −195 mV and less than −400 mV are both related to Photosystem I. This conclusion was supported by the loss of both components when the Photosystem I reaction centre (P-700) was chemically oxidised (Em7.5 = +370 mV). The species having an Em7.5 less than −400 mV is presumed to be the Photosystem I primary acceptor, while the Em7.5 = −195 mV wave could be due to a secondary electron acceptor, such as cytochrome b-563LP, whose photoreduction is possible owing to the long duration of the excitation flash. The DCMU-sensitive component with an Em7.5 of +60 mV is assumed to be the primary quinone acceptor (QA) of Photosystem II. Unlike the Photosystem I redox components, the midpoint potential of this species is sensitive to the background ionic level: the Em7.5 is shifted to −100 mV when the cation concentration is lowered to facilitate membrane unstacking. The slow phase of the electrochromic signal (phase b) has been estimated by measuring the 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone-sensitive amplitude of the absorption change at 20 ms. The signal appears with an estimated Em7.5 = +50 mV, becomes maximal at −50 mV and attenuates with an Em7.5 of about −180 mV. These results suggest that phase b occurs when the plastoquinone pool is reduced and cytochrome b-563LP is oxidised.  相似文献   

7.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

8.
Restoration of a high potential (HP) form of cytochrome b-559 (Cyt b-559) from a low potential (LP) form was the primary process in the reconstitution of O2-evolving center during the photoreactivation of Tris-inactivated chloroplasts. In normal chloroplasts, about 0.5 to 0.7 mol of Cyt b-559 was present in the HP form per 400 chlorophyll molecules. However, the HP form was converted to the LP form when the O2-evolving center was inactivated by 0.8 M alkaline Tris-washing (pH 9.1). The inactivation was reversible and both the Cyt b-559 HP form and the O2-evolving activity were restored by incubating the inactivated chloroplasts with weak light, Mn2+, Ca2+ and an electron donor (photoreactivation). The recovery of the HP form preceded the recovery of O2-evolving activity. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) did not inhibit the recovery of the HP form. Thus, the recovery of Cyt b-559 HP form was the primary reaction in the photoreactivation, which was stimulated by the light-induced redox reaction of the PS-II core center.Abbreviations ASC ascorbate - BSA bovine serum albumin - Chl chlorophyll - Cyt b-559 HP form high potential form of cytochrome b-559 - Cyt b-559 LP form low potential form of cytochrome b-559 - Cyt b-559 VLP form very low potential form of cytochrome b-559 - Cyt f cytochrome f - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenol indophenol - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - HQ hydroquinone - SHN chloroplast-preparation medium containing 0.4 M sucrose, 50 mM Hepes-Na (pH 7.8) and 20 mM NaCl - PS-II Photosystem II  相似文献   

9.
Transformation of three-component redox pattern of cytochrome (Cyt) b559 in PS II membrane fragments upon various treatments is manifested in decrease of the relative content (R) of the high potential (HP) redox form of Cyt b559 and concomitant increase in the fractions of the two lower potential forms. Redox titration of Cyt b559 in different types of PS II membrane preparations was performed and revealed that (1) alteration of redox titration curve of Cyt b559 upon treatment of a sample is not specific to the type of treatment; (2) each value of RHP defines the individual shape of the redox titration curve; (3) population of Cyt b559 may exist in several stable forms with multicomponent redox pattern: three types of three-component redox pattern and one type of two-component redox pattern as well as in the form with a single Em; (4) transformation of Cyt b559 proceeds as successive conversion between the stable forms with multicomponent redox pattern; (5) upon harsh treatments, Cyt b559 abruptly converts into the state with a single Em which value is intermediate between the Em values of the two lower potential forms. Analysis of the data using the model of Cyt b559-quinone redox interaction revealed that diminution of RHP in a range from 80 to 10% reflects a shift in redox equilibrium between the heme group of Cyt b559 and the interacting quinone, due to a gradual decrease of 90?mV in Em of the heme group at the virtually unchanged Em of the quinone component.  相似文献   

10.
11.
Jeannine Maroc  Jacques Garnier 《BBA》1979,548(2):374-385
Five substituted 2-anilinothiophenes and two substituted carbonylcyanide-phenylhydrazones were comparatively studied with respect to their capacities for inducing photooxidation of the cytochrome b-559 in chloroplast fragments and in whole cells of Chlamydomonas reinhardtii (wild type and P-700-lacking mutant Fl 5). In addition, some other compounds: antimycin A, picric acid, tetraphenylboron and NH4Cl were also tested.Cytochrome b-559 photooxidations were clearly observed in the presence of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), 2-(3,4,5-trichloro)anilino-3,5-dinitrothiophene (ANT 2s), 2-(4-chloro)anilino-3,5-dinitrothiophene and, with greater amplitudes, in the presence of carbonylcyanide-p-trifluoromethoxyphenylhydrazone and carbonylcyanide-m-chlorophenylhydrazone, both in whole cells and in chloroplast fragments. Picric acid, antimycin A and tetraphenylboron were also able to induce cytochrome b-559 photooxidation in chloroplast fragments, but not in whole cells. In the wild type, the highest photoinduced redox changes were 1.1 (carbonylcyanide-p-trifluoromethoxyphenylhydrazone, carbonylcyanide-m-chlorophenylhydrazone) and 0.6 (ANT 2p, ANT 2s) μmol of oxidized cytochrome b-559/1 mmol of chlorophyll, corresponding to 40% and 23% of the redox changes which could be induced chemically. All these cytochrome b-559 photooxidations, the greater part of which was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and occurred in the mutant Fl 5, appeared to be mainly Photosystem II-dependent reactions. But 3-(3,4-dichlorophenyl)-1,1-dimethylureainsensitive Photosystem I-dependent photooxidations of cytochrome b-559 occurred also in the wild type. On the other hand, 2-(4-dimethylamine)-anilino-3,5-dinitrothiophene, 2-N-methyl-(3-chloro-4-trifluoromethyl)anilino3,5-dinitrothiophene and NH4Cl did not induce any cytochrome b-559 photooxidation.These results were discussed taking in consideration the nature of the molecular substitutions of the various tested substances and their respective acceleration of the deactivation reactions of the water-splitting enzyme system Y of photosynthesis capacities which had been defined elsewhere by Renger (Renger, G. (1972) Biochim. Biophys. Acta 256, 428–439) for spinach chloroplasts. Like the acceleration of the deactivation reactions of the water-splitting enzyme system Y effect, the capacity for inducing the cytochrome b-559 photooxidation appeared dependent on the acidity of the NH group and on the number of halogenous substituents in the aromatic ring of the molecule. The greatest action towards cytochrome b-559 photooxidation was obtained with the most active acceleration of the deactivation reactions of the water-splitting enzyme system Y agents: carbonylcyanide-p-trifluoromethoxyphenylhydrazone, ANT 2p and ANT 2s.  相似文献   

12.
A Photosystem-II reaction-center particle derived from spinach chloroplasts by Triton treatment contains only one kind of cytochrome, namely, cytochrome b559, in the amount of slightly more than 2 per 100 total chlorophyll molecules. Cytochrome b559 is present in the oxidized form, has a standard redox potential of 58 mV, and undergoes photoreduction.  相似文献   

13.
J. Whitmarsh  W.A. Cramer 《BBA》1977,460(2):280-289
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e. hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100±10 ms, compared to 6–10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t12 = 25–35 ms. The addition of uncouplers, which caused a stimulatory effect on ferricyanide reduction under the same experimental conditions, resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

14.
Redox titrations of the fluorescence quenching components in chloroplasts indicate the presence of two components, one with Em7.6 = + 25 mV and the second with Em7.6 = -270 mV. These midpoint potentials are almost the same as those of two Photosystem II components previously shown to contribute to the chloroplast electrogenic reaction measured at 518 nm (R. Malkin, 1978, FEBS Lett.87, 329–333). Comparison of light-induced fluorescence yield changes with those obtained by redox titration suggests that both fluorescence quenchers are photoreduced. A direct demonstration of the photoreduction of the low-potential fluorescence quencher was observed in experiments at defined redox potentials. Fluorescence induction curves measured at low light intensity in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) also showed a contribution from both fluorescence quenchers. An additional electron acceptor, other than the two fluorescence quenchers, was also identified in the acceptor complex. These results are discussed in terms of several electron acceptors functioning in the Photosystem II reaction center complex, and the possible function of these acceptors is considered.  相似文献   

15.
David B. Knaff 《BBA》1973,325(2):284-296
1. Cytochrome f (λmax = 554 nm, Em = +0.35 V) and cytochrome b558 (λmax = 558 nm, Em = +0.35 V) were photooxidized by Photosystem I and photoreduced by Photosystem II in a cell-free preparation from the blue-green alga Nostoc muscorum. The steady-state oxidation levels of both cytochromes were affected by noncyclic electron acceptors and by inhibitors of noncyclic electron transport. These results are consistent with the hypothesis that the mechanism of NADP reduction by water involves a Photosystem II and a Photosystem I light reaction operating in series and linked by a chain of electron carriers that includes cytochrome f and cytochrome b558.2. Phosphorylation cofactors shifted the steady-state of cytochrome f to a more reduced level under conditions of noncyclic electron transport but had no effect on cytochrome b558. These observations suggest that the noncyclic phosphorylation site lies before cytochrome f (on the Photosystem II side) and that cytochrome f is closer to this site than is cytochrome b558.3. A Photosystem II photoreduction of C550 at 77 °K was observed, suggesting that in blue-green algae, as in other plants, C550 is closely associated with the primary electron acceptor for Photosystem II. A Photosystem I photooxidation of P700 at 77 °K was observed, consistent with P700 serving as the primary electron donor of Photosystem I.  相似文献   

16.
The effects of phospholipid on the redox behavior of b cytochromes in succinate-cytochrome c reductase, the cytochrome b-c1 complex, and an isolated cytochrome b preparation were investigated by the oxidative and reductive titrations. Three Em values of cytochrome b were observed in the phospholipid-sufftcient and -depleted succinate-cytochrome c reductase. Their midpoint potentials at pH 7.4 are 75, 75, and ?100 mV for the sufficient and 10, ?30, and ?160 mV for the depleted reductase. The molar distribution of the b cytochromes of these Em values correspond to 30, 30, and 40%, respectively. The Em values of the isolated cytochrome b preparations were not affected by addition of phospholipids. The isolated b preparation contained two components of equal concentration with Em values of ?85 and ?200 mV. No direct correlation between enzymic activity and the amount of high potential b cytochromes present in the systems was demonstrated. Very little difference was observed in redox behavior of b cytochromes between the aged inactive preparations of phospholipid-depleted reductase and that of freshly prepared reconstitutively active enzyme.  相似文献   

17.
J. Whitmarsh  W.A. Cramer 《BBA》1978,501(1):83-93
Cytochrome b-559, which is normally reduced in the dark, was oxidized by preillumination in the presence of N-methyl-phenazonium methosulfate with low intensity far-red light. The average half-time for the photoreduction of oxidized cytochrome b-559 by a long actinic flash ranged from 90 to 110 ms. In the presence of 0.25 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea the half-time for the photoreduction increased to 230 ms although the extent of the absorbance increase was unchanged. Under similar conditions inhibition of electron transport by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the increase in the chlorophyll fluorescence show that a large fraction of the Photosystem II reaction centers are blocked. These results are consistent with the concept that electrons are shared between different photosynthetic units by a common pool of plastoquinone and imply that the principle pathway for the reduction of cytochrome b-559 by Photosystem II occurs through plastoquinone. In the presence of the uncoupler gramicidin which stimulates non-cyclic electron transport, the rate of photoreduction of cytochrome b-559 is slower (t12 = 180 ms), from which it is inferred that cytochrome b-559 competes with cytochrome f for electrons out of this pool. Comparison of cytochrome b-559 photoreduction and electron transport rates using untreated and KCN-treated chloroplasts indicate that, under conditions of basal electron transport from water to ferricyanide, approximately one-fifth of the electrons from Photosystem II go through cytochrome b-559 to ferricyanide. Further support for this pathway is provided by a comparison of the effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (dibromothymoquinone) on the rates of reduction of cytochrome b-559 and ferricyanide.  相似文献   

18.
Peter Horton  Neil R. Baker 《BBA》1980,592(3):559-564
Fluorescence induction at ?196°C has been monitored in chloroplasts rapidly frozen after poising at different redox potentials at room temperature. It was found that, as at room temperature, the initial level of fluorescence observed upon shutter opening (Fo), relative to the final level observed after 10 seconds of illumination (Fm) increased as the redox potential of the chloroplasts was lowered. Redox titration revealed the presence of two quenching components with Em,7.8 at ?70 mV and ?275 mV accounting for approx. 75% and 25% of the variable fluorescence (Fv). Parallel observation of fluorescence yield at room temperature similarly gave two components, with Em,7.8 at ?95 mV and ?290 mV, also accounting for approx. 75% and 25%. Simultaneous measurement of fluorescence emission at ?196°C at 695 nm and 735 nm indicated that both emissions are quenched by the same redox components.  相似文献   

19.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):443-451
Redox titration of the electrochromic carotenoid band shift, detected at 50 μs after a saturating actinic flash, in spinach chloroplasts, shows that only one electron acceptor in Photosystem II participates in a transmembrane primary electron transfer. This species, the primary quinone acceptor, Q, shows only one midpoint potential (Em,7.5) of approx. 0 V and is undoubtedly equivalent to the fluorescence quencher, QH. A second titration wave is observed at low potential (Em,7.5 ? ? 240 mV) and at greater than 3 ms after a saturating actinic flash. This wave has an action spectrum different from that of Photosystem II centers containing Q and could arise from a secondary but not primary electron transfer. A low-potential fluorescence quencher is observed in chloroplasts which largely disappears in a single saturating flash at ? 185 mV and which does not participate in a transmembrane electron transfer. This low-potential quencher (probably equivalent to fluorescence quencher, QL) and Q are altogether different species. Redox titration of C550 shows that if electron acceptor Qβ is indeed characterized by an Em,7 of + 120 mV, then this acceptor does not give rise to a C550 signal upon reduction and does not participate in a transmembrane electron transfer. This titration also shows that C550 is not associated with QL.  相似文献   

20.
Peter Horton 《BBA》1981,635(1):105-110
The effect of alteration of redox potential on the kinetics of fluorescence induction in pea chloroplasts has been investigated. Potentiometric titration of the initial (Fi) level of fluorescence recorded upon shutter opening gave a two component curve, with Em(7) at ?20 mV and ?275 mV, almost, identical to results obtained using continuous low intensity illumination (Horton, P. and Croze, E. (1979) Biochim. Biophys. Acta 545, 188–201). The slow or tail phase of induction observed in the presence of DCMU can be eliminated by poising the redox potential at approx. 0 to +50 mV. At this potential Fi was increased by less than 10% and the higher potential quencher described above was only marginally reduced. The disappearance of the slow phase titrated as an n = 1 component with an Em(7) of +120 mV. Therefore it seems unlikely that the slow phase of fluorescence induction is due to photoreduction of the ?20 mV quencher. These results are discussed with reference to current ideas concerning heterogeneity on the acceptor side of Photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号