首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 515 nm absorbance change was studied in mesophyll and bundle sheath chloroplasts of maize, which contain different amounts of grana. The amplitude of the 515 nm signal (induced by 3 micro seconds flashes repeated at 4 s intervals) has shown a correlation with the granum content of the samples. However, upon addition of N-methylphenazonium methosulphate the 515 nm signal became independent of the amount of grana: in agranal thylakoids a large pool of silent Photosystem I was activated and, as a result, the amplitude of the 515 nm signal of agranal chloroplasts increased to the level exhibited by granal chloroplasts. These data show that the 515 nm absorbance change is not limited to small closed vesicles like grana, but in the presence of suitable electron donors single lamellae of bundle sheath chloroplasts can also be active.  相似文献   

2.
Granum-containing chloroplasts from mesophyll cells of maize (Zea mays L. var. MV 861) leaves exhibited circular dichroism spectra with a large double signal; peaks at 696 nm (+) and 680 nm (−). In the circular dichroism spectra obtained with agranal chloroplasts of bundle sheath cells, this large double signal is absent. Separation of grana lamellae, in a medium of low salt concentration and in KSCN solution, resulted only in a slight decrease of the amplitude, while upon treatment with digitonin the large double signal disappeared. A negative signal of the chlorophyll b peak at 654 nm was observed in the case of both granal and agranal chloroplasts, and it was not affected either by low salt or by digitonin treatment. A positive peak at about 515 nm was higher in granal than in agranal chloroplasts.  相似文献   

3.
Dimorphic chloroplasts of Zea mays L. cv. GH5004 from bundle sheath and mesophyll cells contained similar amounts of DNA, while bundle sheath chloroplasts contained twice the number of nucleoids compared to mesophyll chloroplasts. On average bundle sheath nucleoids were half the size of mesophyll nucleoids and contained half as much DNA. Electron microscope autoradiography of the chloroplasts showed that the nucleoid DNA is associated with the thylakoids and in the case of mesophyll chloroplasts preferentially with the grana. These observations suggest that the differences in nucleoid distribution may be due to differences in membrane morphology, with the small nucleoids of agranal bundle sheath chloroplasts being widely dispersed.  相似文献   

4.
The difference spectroscopy technique has been utilized to investigate the temperature-induced spectral changes in mesophyll and bundle sheath chloroplasts of maize ( Zea mays L. cv. Ganga-5) in order to assess the role of different pigment-protein complexes in the manifestation of temperature effect on the chloroplast membranes. Cooling and heating of both mesophyll and bundle sheath chloroplasts resulted in absorbance difference (AA) bands at similar wavelengths but the degree of absorb-ance changes were significantly higher in bundle sheath chloroplasts. For example, upon cooling to 7-8°C, positive AA bands were observed at 440, 490 and 680 nm in mesophyll chloroplasts and at 440, 495–500 and 680 nm in bundle sheath chloroplasts but the absorbance change at 680 nm was ca 2% in mesophyll chloroplasts, whereas it was ca 5% in bundle sheath chloroplasts, which have a lower content of light-harvesting pigment-protein complex. The role of chlorophyll-protein complexes was further investigated by monitoring the temperature-induced spectral changes of mesophyll and bundle sheath chloroplasts isolated from lincomycin-treated maize plants where lincomycin selectively inhibits the biosynthesis of specific chlorophyll-protein complexes. Results indicated that depletion of certain pigment-protein complexes in mesophyll chloroplasts made them more susceptible (a ca 4% vs ca 2% absorbance change upon cooling and a ca 6% vs ca 4% absorbance change upon heating) and less tolerant to temperature variation (a 76% vs 39% reversibility during ambient→Cooling→ambient temperature cycle). The data indicate that pigment-protein complexes play a significant role in protecting the chloroplast membranes against temperature variation.  相似文献   

5.
The photochemical activities of chloroplasts isolated from bundle sheath and mesophyll cells of maize (Zea mays var. DS606A) have been measured. Bundle sheath chloroplasts are almost devoid of grana, except in very young leaves, while mesophyll chloroplasts contain grana at all stages of leaf development.  相似文献   

6.
In intact (type A) chloroplasts isolated from mesophyll protoplasts of maize (Zea mays L. convar. KSC 360) the flash-induced 515 nanometer absorbance change was much higher than in conventionally prepared (types B and C) chloroplasts. The 515 nanometer signal of type A chloroplasts exhibited a biphasic rise: the initial very fast rise (rise time «1 millisecond) was followed by a slow increase of absorbance (rise time 10 to 20 milliseconds). With decreasing degree of envelope retention the slow phase disappeared. Thus the biphasic rise of the flash-induced 515 nanometer absorbance change can be regarded as an attribute of intact chloroplasts.  相似文献   

7.
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C4 plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at 559 nm and 553 nm, and the photoreduction of methyl viologen from H2O. (The rate of methyl viologen photoreduction in bundle sheath chloroplasts was 40% of that of mesophyll chloroplasts.)  相似文献   

8.
Intact mesophyll and bundle sheath chloroplasts wee isolated from the NADP-malic enzyme type C4 plants maize, sorghum (monocots), and Flaveria trinervia (dicot) using enzymic digestion and mechanical isolation techniques. Bundle sheath chloroplasts of this C4 subgroup tend to be agranal and were previously reported to be deficient in photosystem II activity. However, following injection of intact bundle sheath chloroplasts into hypotonic medium, thylakoids had high Hill reaction activity, similar to that of mesophyll chloroplasts with the Hill oxidants dichlorophenolindophenol, p-benzoquinone, and ferricyanide (approximately 200 to 300 micromoles O2 evolved per mg chlorophyll per hour). In comparison to that of mesophyll chloroplasts, the Hill reaction activity of bundle sheath chloroplasts of maize and sorghum was labile and lost activity during assay. Bundle sheath chloroplasts of maize also exhibited some capacity for 3-phosphoglycerate dependent O2 evolution (29 to 58 micromoles O2 evolved per milligram chlorophyll per hour). Both the mesophyll and bundle sheath chloroplasts were equally effective in light dependent scavenging of hydrogen peroxide. The results suggest that both chloroplast types have noncyclic electron transport and the enzymology to reduce hydrogen peroxide to water. The activities of ascorbate peroxidase from these chloroplast types was consistent with their capacity to scavenge hydrogen peroxide.  相似文献   

9.
1. The agranal bundle sheath chloroplasts of Sorghum bicolor possess very low Photosystem II activity compared with the grana-containing mesophyll chloroplasts.

2. Sorghum mesophyll chloroplasts have a chlorophyll (chl) and carotenoid composition similar to that of spinach chloroplasts. In contrast, the sorghum bundle sheath chloroplasts have a higher chl a/chl b ratio; they are enriched in β-carotene and contain relatively less xanthophylls as compared to sorghum mesophyll or spinach chloroplasts.

3. Sorghum mesophyll chloroplasts with 1 cytochrome f, 2 cytochrome b6 and 2 cytochrome b-559 per 430 chlorophylls have a cytochrome composition similar to spinach chloroplasts. Sorghum bundle sheath chloroplasts contain cytochrome f and cytochrome b6 in the same molar ratios as for the mesophyll chloroplasts, but cytochrome b-559 is barely detectable.

4. The chl/P700 ratios of mesophyll chloroplasts of S. bicolor and mesophyll and bundle sheath chloroplasts of Atriplex spongiosa are similar to that of spinach chloroplasts suggesting that these chloroplasts possess an identical photosynthetic unit size to that of spinach. The agranal bundle sheath chloroplasts of S. bicolor possess a photosynthetic unit which contains only about half as many chlorophyll molecules per P700 as found in the grana-containing chloroplasts.

5. The similarity of the composition of the bundle sheath chloroplasts of S. bicolor with that of the Photosystem I subchloroplast fragments, together with their smaller photosynthetic unit and low Photosystem II activities suggests that these chloroplasts are highly deficient in the pigment assemblies of Photosystem II.  相似文献   


10.
The vascular bundle sheath cells of sugar cane contain starch-storing chloroplasts lacking grana, whereas the adjacent mesophyll cells contain chloroplasts which store very little starch and possess abundant grana. This study was undertaken to determine the ontogeny of these dimorphic chloroplasts. Proplastids in the two cell types in the meristematic region of light-grown leaves cannot be distinguished morphologically. Bundle sheath cell chloroplasts in tissue with 50% of its future chlorophyll possess grana consisting of 2-8 thylakoids/granum. Mesophyll cell chloroplasts of the same age have better developed grana and large, well structured prolamellar bodies. A few grana are still present in bundle sheath cell chloroplasts when the leaf tissue has 75% of its eventual chlorophyll, and prolamellar bodies are also found in mesophyll cell chloroplasts at this stage. The two cell layers in mature dark-grown leaves contain morphologically distinct etio-plasts. The response of these two plastids to light treatment also differs. Plastids in tissue treated with light for short periods exhibit protrusions resembling mitochondria. Plastids in bundle sheath cells of dark-grown leaves do not go through a grana-forming stage. It is concluded that the structure of the specialized chloroplasts in bundle sheath cells of sugar cane is a result of reduction, and that the development of chloroplast dimorphism is related in some way to leaf cell differentiation.  相似文献   

11.
A good correlation exists between the extent of thylakoid aggregation (grana reconstitution) and the increase in the chlorophyll a fluorescence yield (FDCMU; DCMU = 3-(3′,4′-dichlorophenyl)-1, 1-dimethyl urea) caused by the addition of monovalent or divalent cations to low-salt disorganized (agranal) chloroplasts. The extent of grana stacking was monitored by the yield of heavy subchloroplast fractions after digitonin disruption of chloroplasts. A good correlation of the cation effect on both parameters was also found in light subchloroplast fractions (10,000g supernatants) obtained from sonicated “low-salt” Tricine-suspended pea chloroplasts. Addition of cations to the agranal protochloroplasts of etiolated pea or bean leaves exposed to periodic light-dark cycles, suspended in low-salt Tricine buffer, does not affect formation of heavy subchloroplast fractions, nor does it affect their chlorophyll a fluorescence yield level (FDCMU). The cation effect on the increase of the chlorophyll a fluorescence yield level seems to be due to the cation-induced thylakoid structural changes leading to grana stacking.  相似文献   

12.

Background and Aims

C4 eudicot species are classified into biochemical sub-types of C4 photosynthesis based on the principal decarboxylating enzyme. Two sub-types are known, NADP-malic enzyme (ME) and NAD-ME; however, evidence for the occurrence or involvement of the third sub-type (phosphoenolpyruvate carboxykinase; PEP-CK) is emerging. In this study, the presence and activity of PEP-CK in C4 eudicot species of Trianthema and Zaleya (Sesuvioideae, Aizoaceae) is clarified through analysis of key anatomical features and C4 photosynthetic enzymes.

Methods

Three C4 species (T. portulacastrum, T. sheilae and Z. pentandra) were examined with light and transmission electron microscopy for leaf structural properties. Activities and immunolocalizations of C4 enzymes were measured for biochemical characteristics.

Key Results

Leaves of each species possess atriplicoid-type Kranz anatomy, but differ in ultrastructural features. Bundle sheath organelles are centripetal in T. portulacastrum and Z. pentandra, and centrifugal in T. sheilae. Bundle sheath chloroplasts in T. portulacastrum are almost agranal, whereas mesophyll counterparts have grana. Both T. sheilae and Z. pentandra are similar, where bundle sheath chloroplasts contain well-developed grana while mesophyll chloroplasts are grana deficient. Cell wall thickness is significantly greater in T. sheilae than in the other species. Biochemically, T. portulacastrum is NADP-ME, while T. sheilae and Z. pentandra are NAD-ME. Both T. portulacastrum and Z. pentandra exhibit considerable PEP-CK activity, and immunolocalization studies show dense and specific compartmentation of PEP-CK in these species, consistent with high PEP-CK enzyme activity.

Conclusions

Involvement of PEP-CK in C4 NADP-ME T. portulacastrum and NAD-ME Z. petandra occurs irrespective of biochemical sub-type, or the position of bundle sheath chloroplasts. Ultrastructural traits, including numbers of bundle sheath peroxisomes and mesophyll chloroplasts, and degree of grana development in bundle sheath chloroplasts, coincide more directly with PEP-CK recruitment. Discovery of high PEP-CK activity in C4 Sesuvioideae species offers a unique opportunity for evaluating PEP-CK expression and suggests the possibility that PEP-CK recruitment may exist elsewhere in C4 eudicots.  相似文献   

13.
Intact (class-A) granal and agranal maize chloroplasts and chloroplast fragments were examined for differential scattering of circularly polarized light (measured at 90 degrees) and c.d. (circular dichroism) (measured at 0 degrees) by using a modified spectropolarimeter with a large acceptance angle. Useful c.d. information was obtained by making corrections for scattered light. Chloroplast fragments exhibited a large and characteristic differential scattering of circularly polarized light recognized in the presence of granal chloroplasts. It is confirmed that agranal chloroplasts do not have the intense 682 nm c.d. peak that is assigned to the presence of grana.  相似文献   

14.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

15.
The ultrastructure and distribution of chloroplasts, mitochondria, peroxisomes, and other cellular constituents have been examined in cross sections of leaves from plants with either high or low photosynthetic capacity. Photosynthetic capacity of a given plant cannot be correlated with the presence or absence of grana in bundle sheath cell chloroplasts, the presence or absence of starch grains in bundle sheath or mesophyll cell chloroplasts, the chloroplast size in bundle sheath or mesophyll cells, or the location of chloroplasts within bundle sheath cells. We conclude that the number and concentration of chloroplasts, mitochondria, and peroxisomes in bundle sheath cells is the most reliable anatomical criterion presently available for determining the photosynthetic capacity of a given plant.  相似文献   

16.
Anna Drozak  El?bieta Romanowska 《BBA》2006,1757(11):1539-1546
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

17.
A new light-induced absorbance change having a maximum at 561nm was discovered in the thalli, as well as in isolated chloroplastsof a green alga, Bryopsis maxima Okamura. Another simultaneous change also occurred at 515 nm. The magnitudeof the 561 nm change was several-fold larger than that at 515nm and much larger than could be explained by an oxidation-reductionchange in cytochromes contained in chloroplasts. There was noabsorbance change in the Soret region that may be correlatedto the 561 nm change. Both 561 and 515 nm changes showed a spike-liketime course pattern, both having a half-rise time of about 20msec. Effects of inhibitors and uncouplers such as DCMU, Cl-CCPand gramicidin J on the absorbance change were also similarat 561 and at 515 nm. We inferred that the 561 nm change is related to photophosphorylationand possibly to the membrane potential in a way similar to the515 nm change. (Received March 27, 1974; )  相似文献   

18.
Photoreduction of NADP from water in agranal chloroplasts isolated from the leaf bundle sheath cells of Zea mays (var. DS 606A) or Sorghum bicolor (var. Texas 610) was dependent upon addition of plastocyanin as well as ferredoxin. Activity was further increased by the addition of ferredoxin NADP-reductase. Saturation for plastocyanin was reached at about 6 micromolar. In contrast, grana-containing chloroplasts isolated from leaf mesophyll cells of these plants or from pea (Pisum sativum L.) leaves did not require either plastocyanin or ferredoxin NADP-reductase for NADP photoreduction from water, although with some preparations plastocyanin stimulated the activity.  相似文献   

19.
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.  相似文献   

20.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号