首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To detect changes in the oxygen concentration during biochemical reactions, the exchange broadening in the ESR spectra of nitroxide radicals caused by the dissolved oxygen, has been used. The measurements have been carried out using changes in the width either of the proton hyperfine structure components or of the nitrogen hyperfine structure line with an unresolved proton structure. Detection of mitochondrial respiration in a volume of about 10(-3) cm 3 and respiration for 100 +/- 5 liver cells in a volume of about 10(-4) cm3 has been carried out.  相似文献   

2.
The effects of oxygen concentration and light intensity on the rates of apparent photosynthesis, true photosynthesis, photorespiration and dark respiration of detached spruce twigs were determined by means of an infra-red carbon dioxide analyzer (IRCA). A closed circuit system IRCA was filled with either 1 per cent of oxygen in nitrogen, air (21 % O2) or pure oxygen (100 % O2). Two light intensities 30 × 103 erg · cm ?2· s?1 and 120 × 103 erg · cm?2· s?1 were applied. It has been found that the inhibitory effect of high concentration of oxygen on the apparent photosynthesis was mainly a result of a stimulation of the rate of CO2 production in light (photorespiration). In the atmosphere of 100 % O2, photorespiration accounts for 66–80 per cent of total CO2 uptake (true photosynthesis). Owing to a strong acceleration of photorespiration by high oxygen concentrations, the rate of true photosynthesis calculated as the sum of apparent photosynthesis and photorespiration was by several times less inhibited by oxygen than the rate of apparent photosynthesis. The rates of dark respiration were essentially unaffected by the oxygen concentrations used in the experiments. An increase in the intensity of light from 30 × 103 erg · cm?3· s?1 to 120 · 103 erg · cm?2· s?1 enhanced the rate of photorespiration in the atmospheres of 21 and 100 % oxygen but not in 1 % O2. The rate of apparent photosynthesis, however, was little affected by light intensity in an atmosphere of 1 % oxygen.  相似文献   

3.
The spectrum of the Rapid Mo(V) electron paramagnetic resonance signal from xanthine oxidase dissolved in 17O-enriched water is presented. Difference technqiues have been used to eliminate the 16O contribution. Clearly observed structure in the spectrum is attributed to moderately strong hyperfine coupling of one oxygen atom to molybdenum. Though complete interpretation of the spectrum has not been attempted, one component of A(17O) is about 1.6 mT. The possibility that the oxygen is present in a Mo---OH group, whose proton is the strongly-coupled proton of the Rapid signal, is discussed.  相似文献   

4.
Sporophytes of Ecklonia cava Kjellman (Laminariales, Phaeophyta) with a stipe length of 22–102 cm were collected at 6–9 m depth in Nabeta Bay, Shimoda, central Japan by scuba diving in February (winter) and in August (summer) 1998. Dark respiration of the intact stipe of E. cava was measured at various water temperatures ranging from 15 to 27.5°C in winter and 15–30°C in summer in a closed system by using a dissolved oxygen meter. The stipe respiration was compared on whole stipe, length, surface area, volume, wet weight and dry weight bases. On each basis, the stipe respiration always increased with a rise in water temperature within the temperature range investigated. The stipes showed similar respiration rates on each basis of length, surface area, volume, wet weight and dry weight at each temperature, irrespective of the stipe length. The mean respiration rates in winter (at 15–27.5°C) were: length, 16.7–32.5 μL O2 cm?1 h?1; surface area, 3.2–6.2 μL O2 cm?2 h?1; volume, 7.6–15.0 μL O2 cm?3 h?1; wet weight, 6.2–12.2 μL O2 g (wet weight)?1 h?1; and dry weight, 43.8–88.0 μL O2 g (dry weight)?1 h?1. Those for summer (at 15–30°C) were: length, 17.1–32.0 μL O2 cm?1 h?1; surface area, 3.6–6.8 μL O2 cm?2 h?1; volume, 9.7–18.7 μL O2 cm?3 h?1; wet weight, 7.6–14.6 μL O2 g (wet weight)?1 h?1; and dry weight, 49.4–95.8 μL O2 g (dry weight)?1 h?1. This is the first report of the intact stipe respiration of E. cava at various temperatures.  相似文献   

5.
The spectrum of the Rapid Mo(V) electron paramagnetic resonance signal from xanthine oxidase dissolved in 17O-enriched water is presented. Difference technqiues have been used to eliminate the 16O contribution. Clearly observed structure in the spectrum is attributed to moderately strong hyperfine coupling of one oxygen atom to molybdenum. Though complete interpretation of the spectrum has not been attempted, one component of A(17O) is about 1.6 mT. The possibility that the oxygen is present in a MoOH group, whose proton is the strongly-coupled proton of the Rapid signal, is discussed.  相似文献   

6.
It is proposed to measure plasma densities in the range of 105–109 cm?3 by a high-frequency resonator with a periodic structure consisting of annual high-frequency electrodes mounted on oppositely directed racks. The method proposed substantially increases the proportionality factor between the electron density and the shift of the resonator eigenfrequency. This factor is determined by the calibration method using an electron beam with given parameters. The calibration ensures an accuracy of about 10% for density measurements in a plasma produced by a 5-MeV proton beam propagating in air at pressures of 10?2–10?5 torr.  相似文献   

7.
《Free radical research》2013,47(4-6):351-358
n-Propyl gallate reacts with the superoxide radical anion in aqueous solution (k = 5.1 × 105 mol?1 dm3s?1). The spectrum of the transient species so formed has been measured (absorbance maximum at 550nm, ? = 1360mol?1dm3cm?1). Electron or H atom transfer processes as well as proton abstraction have been excluded as possible mechanisms, and it is proposed that an addition reaction takes place.  相似文献   

8.
Coherent anti-Stokes Raman scattering spectra, in resonance with the isoalloxazine visible electronic transition, have been obtained down to 300 cm?1 for flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase, in H2O and D2O. Several isoalloxazine vibrational modes can be identified by analogy with those of uracil. Of particular interest is a band at ~1255 cm?1 in H2O, which is replaced by another at ~1295 cm?1, in D2O. The H2O band appears to be a sensitive monitor of H-bonding of the N3 isoalloxazine proton to a protein acceptor group. It shifts down by 10 cm?1 in riboflavin binding protein, and disappears altogether in glucose oxidase. Other band shifts, of 3–5 cm?1, are similar for the two flavoproteins, and may reflect environmental changes between aqueous solution and the protein binding pockets.  相似文献   

9.
The most dominant factor influencing the oxidation-reduction potentials (E) in the cultured system was oxygen tension. H was an useful index to express the degree of oxygen supply in place of dissolved oxygen (PL) under a limited oxygen supply. The conversion of microbial products caused by the change in oxygen supply was clearly analyzed by the use of E value. Bacillus subtilis excreted lactic acid at the E value ?220 mV, 2,3-butyleneglycol at ?195 mV and acetoin at ?160mV as the main product. E also gave the significant information concerning the changes in cell’s respiration. Cyanide at the concentration of 10?5m, azide at 10?3m and 2,4-dinitrophenol (DNP) at 10?2m inhibited cell respiration causing the decrease in E and the increase in PL, and DNP at 0.4×10?3m promoted oxygen uptake of the cells causing the decrease in both E and PL.  相似文献   

10.
Time-resolved IR analyses for the protonation and polarity changes of carboxyl groups involved in proton pump enzymes under turnover conditions are indispensable for elucidation of their proton-pump mechanisms. We have developed a new time-resolved infrared facility by introducing a flow system for transferring highly concentrated and thus viscous protein solution to a thin (50?μm) flow cell equipped in a highly sensitive IR spectrometer constructed with the femtosecond mid-IR pulse laser with spectral width of 350?cm?1 as an IR white light source equipped with multi-channel MCT detector. This facility equipped with O2 supply system enables the sub-millisecond time scale infrared measurements of the O2 reduction coupled with proton pumping by bovine cytochrome c oxidase (CcO) initiated by CO-flash photolysis in the COOH (1725–1770?cm?1) region with the accuracy of about 10?μO.D. under the background O.D. of 1. The facility identifies a band intensity change at ~1744?cm?1 assignable to protonation of a carboxyl group coupled with a single electron transfer to the O2 reduction center within 1?ms after initiation of the reaction. The results suggest that the facility detects protonation of a single carboxyl group included in large proteins like as CcO (210?kDa). The present facility sensitively identifies also polarity changes in COOH group by detecting shifts of the bands near 1750?cm?1 and 1760?cm?1, without significant intensity changes. These findings show the performance of this facility sufficiently high for providing crucial information for understanding the proton transferring mechanisms of protein carboxyl groups.  相似文献   

11.
The effects of pressure on the sol-gel transition of κ- and ι-carrageenans were studied in KCl solutions under high pressures up to 3000 kg/cm2. The carrageenan gels were destabilized by pressure: the pressure depression of melting temperature, (dT/dP)m, was ?5.7 × 10?3 and ?4.0 × 10?3 K cm2/kg independent of KCl concentration for κ- and ι-carrageenans, respectively. The enthalpy, entropy and volume changes accompanying the gel formation were calculated from the Eldridge-Ferry's plots and the Clausius-Clapeyron equation. The volume change per unit cross-link (two disaccharide residues) was estimated to be (2.5 ~ 4.9) and (1.7 ~ 3.4) ml/mol for κ- and ι-carrageenans, respectively. The compressibility of both carrageenan molecules appeared to be larger by (1.6 ~ 2.6) × 10?12 (κ-form) and by (0.8 ~ 1.3) × 10?12cm2/dyn (i-form) in gel state as compared with in sol state These increases in volume and compressibility on gelation were attributed to a reduction of water of hydration from the carrageenan molecules, which is mainly due to a replacement of the polymer-water hydrogen bond by the polymer-polymer hydrogen bond. These results seemed not inconsistent with the idea that a double helix structure of carrageenan gels may persist in solution as well as in the solid state.  相似文献   

12.
Measurements of photosynthesis, dark respiration, and leaf chlorophyll content were made in the laboratory on both shallow (1 to 5 m) and deep (25 to 33 m) leaves of Cymooceu nodosa (Ucria) Aschers, and Posidonia oceanica (L.) Delile in Malta in April and August. Light saturated photosynthetic rates in Cymodocea were similar in spring (18 μg C cm?2h?1) and summer (25μg Ccm?2h?1) if the 9 C increase in water temperature in summer is taken into account: however, photosynthetic rates in Posidonia were higher in spring than in summer, especially in shallow leaves which fixed ≈ 10 μg C cm?2h?1 in spring but less than half that in summer when rates of carbon accretion were close to compensation point. Levels of irradiance at which photosynthesis was light saturated ( were ≈ 3 mW cm?2 PAR for Cymodocea and 2 mW cm?2 PAR for Posidonia: underwater irradiance at the lower depth limit for these plants (≈33 m) was ≈3 mW cm?2 PAR. corresponding closely to the saturation irradiances. Compensation irradiance for both species was between 0.3 and 0.5 mW cm?2 PAR.Photosynthesis in both species had a temperature optimum at about 30 C (slightly higher in Cymodocea in summer). Dark respiration rates were generally similar in spring and summer, in the region of 3 μg C cm?2 h?1 in Cymodocea and 1.5 to 2 μg C cm?2 h?1 in Posidonia. Increase in dark respiration rates with increased temperature was considerably greater in spring than in summer in both species. Photosynthesis was directly proportional to chlorophyll content in Posidonia in the range encountered (up to 58 μg Chl cm?2) and the summer reduction in photosynthesis was closely correlated with reduction in chlorophyll content. It seems unlikely that environmental factors such as seasonal changes in light intensity, nutrient availability or water temperature were directly responsible for this loss of chlorophyll and it is suggested that this is a manifestation of general leaf senescence, probably induced by daylength changes but possibly enhanced by increased water temperature. Cymodocea showed a similar reduction in chlorophyll content in summer but this was not reflected in reduced photosynthesis. Thus, although Cymodocea may grow rapidly throughout the spring and summer with an overall productivity of 3.6 g C m?2 day?1 in shallow water, the luxuriant growths of Posidonia must develop in the first half of the year when a dense meadow may produce up to 2.1 g C m?2 day?1 in shallow water, declining to ?0.6 g C m?2 day?1 in summer.  相似文献   

13.
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD.  相似文献   

14.
A thorough spectral investigation of the copper(II) complex of the antitumor compound, bleomycin, has been carried out in solution employing optical, difference optical, electron spin resonance, and circular dichroism techniques. The optical spectrum of a pH = 7 solution of the 1:1 complex between copper(II) and bleomycin is characterized by a broad weak band in the visible region (λmax = 610 nm) that cannot be resolved and intense ultraviolet bands at 317 (? = 2800), 327 (shoulder), 250 (? = 4700), and 257 nm (shoulder). The circular dichroism spectrum in the visible region shows the broad and weak visible absorption band contains at least three components (558, 675, and 880 nm) that are likely to be “d-d” in origin. The electron spin resonance spectrum is characteristic of a tetragonal d9 copper(II) system showing no rhombic distoritions at X-band frequencies (gx = gy ± 0.002). The spin Hamiltonian parameters for the pH = 7.0 solution corrected for second order effects are A = 177 × 10?4 cm?1, A ? 15 × 10?4 cm?1, g = 2.214, g = 2.039. Most interesting was the observation of extra hyperfine splitting due to endogenous nitrogen coordination in a 30% glycerol glass (AN = 12.0 × 10?4 cm?1). That pattern is best interpreted as a seven-line sequence associated with three liganded nitrogens. A dramatic change in all spectral properties occurs when the pH of the copper(II)-bleomycin complex is lowered to 2.5. All these data taken together suggest a CuN3O coordination complex in solution. Details and justifications as well as a discussion of the limitations of the interpretations are presented.  相似文献   

15.
Effects of deuteration on the Raman spectrum of a tryptophan residue have been examined. The 1386 cm?1 line of deuterated tryptophan residue has been found to be useful for tracing the hydrogen-deuterium exchange reaction of this residue in a protein. An examination on bovine α-lactalbumin at pH 6.4 and at 20°C indicates that two of the four tryptophan residues exchange with a rate constant much greater than 9 × 10?4 sec?1, while the other two exchange with a rate constant of 4 × 10?5 sec?1. The latter two have been assigned to Trp 28 and Trp 108 of this protein. The kinetics of hydrogen-deuterium exchange reaction of completely “free” tryptophan residue have been examined by a proton magnetic resonance study on tryptophan itself. By taking the result of this examination into account, the chance of exposure to the solvent for Trp 28 or Trp 108 has been estimated to be 3 × 10?6 at pH 6.4 and at 20°C.  相似文献   

16.
Online monitoring and controlling of different cellular parameters are key issues in aerobic bioprocesses. Since mixotrophic cultivation, in which we observe a mixture of cellular respiration and oxygen production has gained more popularity, there is a need for an on‐process quantification of these parameters. The presented and adapted double gassing‐out method applied to a mixotrophic cultivation of Galdieria sulphuraria , will be a tool for monitoring and further optimization of algal fermentation in nonstirred photobioreactors (PBR). We measured the highest net specific oxygen production rate (opr net) as 5.73 · 10?3 molO2 g?1 h?1 at the lowest oxygen uptake rate (OUR) of 1.00 · 10?4 molO2 L?1 h?1. Due to higher cell densities, we also demonstrated the increasing shading effect by a decrease of opr net, reaching the lowest value of 1.25 10?5 molO2 g?1 h?1. Nevertheless, with this on process measurement, we can predict the relation between the zone in which oxygen is net produced to the area where cell respiration dominates in a PBR, which has a major impact to optimize cell growth along with the formation of different products of interest such as pigments.  相似文献   

17.
A conduction type calorimeter has been designed to chase microbial growth in batch system. The calorimeter is of a twin structure having thermopile plates as a temperature sensor, The heat evolution during the microbial growth at a required temperature can be observed as an output-voltage generated at thermopile terminals with a sensitivity of 58.5 mV K?1

A stainless steel cell with a volume of 300 cm3 serves as a culture cell which is capable of being autoclaved prior to the initiation of calorimetric run, taking out from the calorimeter body.

Because of the twin structure, the apparatus works with sufficient stability in detecting small heat evolution for long duration. Its operation has been demonstrated with the growth of Sacch. cerevisiae grown on liquid synthetic medium under anaerobic condition.  相似文献   

18.
An analysis of the accumulation of water and dry matter in tomato fruit   总被引:24,自引:6,他引:18  
Abstract Previously published data from tomato plants grown in nutrient solutions having one of three electrical conductivities (2, 12 and 17 mS cm?1) were analysed. The rate of water import into the fruit, and the proportion of this conducted by the xylem stream were calculated from the daily rates of transpiration and the net accumulation of water and calcium. The rate of water import decreased as the conductivity of the nutrient solution rose, the maximum daily import rates in the third week after pollination being 3.2, 3.0 and 1.8 g fruit?1 d?1 for fruit grown at 2, 12 and 17 mS cm?1, respectively. During fruit development, the proportion of water imported via the xylem fell from 8–15% to 1–2% at maturity. The principal source of water for tomato fruit growth was phloem sap. Based on the daily rates of net dry matter accumulation, respiration and phloem water import, the calculated dry matter concentration of the phloem sap declined from 7 to 3%, or from 12.5 to 7.8% during fruit development in low or high salinity, respectively. The similar dry matter accumulation of fruit grown at different salinities was due to changes in both volume and concentration of phloem sap. Potassium salts in tomato fruit were calculated lo have contributed –0.29, –0.48 and –0.58 MPa to total fruit osmotic potential in the 2, 12 and 17 mS cm?1 treatments, respectively, which accounted for 38% or 49% of the measured total osmotic potential of the 2 mS cm?1 or 17 mS cm?1 treatments. The contribution of hexoses to total fruit osmotic potential in the young fruit was from about –0.1 to –0.2 MPa at all salinities. The osmotic potential of tomato fruit is regulated more by potassium salts than by hexoses.  相似文献   

19.
The iron-containing B2 subunit of ribonucleotide reductase from Escherichia coli has been investigated by Raman spectroscopy. Both the tyrosyl radical-containing native protein and the radical-free protein exhibit a resonance-enhanced Raman band at 500 cm?1. This band is assigned to an Fe-O vibrational mode arising from an oxygen-containing ligand. The failure to observe any tyrosinate ring modes makes it unlikely that ribonucleotide reductase is an iron-tyrosinate protein and rules out tyrosinate oxygen as a ligand. It is proposed that the 500 cm?1 band in ribonucleotide reductase is analogous to the 510 cm?1 Fe-O vibrational mode of methemerythrin and arises from an oxo- or carboxylate-bridge between the antiferromagnetically-coupled Fe(III) ions.  相似文献   

20.
Normal mode analysis of mouse epidermal growth factor (mEGF) has been carried out at room temperature. The value of the lowest frequency is 4.1 cm?1. This mode corresponds to hinge-bending motion between the N-terminal and C-terminal domains of mEGF. This hinge-bending motion corresponds to the “mitten mode.” In this motion, the N-terminal domain is almost rigid. However, the C-terminal domain is found to consist of three rigid segments. Two segments, C33-D46 and G51-R53, are observed moving in the same direction, but L47-W50 moves in the opposite direction. For this mode, the effective Young's modulus turned out to be 1.1 × 109 dyn·?2. This value is a little larger than that of the mode with the lowest frequency 4.4 cm?1 of BPTI. The difference may be related to the fraction of residues involved in β-sheets in the molecule. Similar analyses are carried out for other low frequency modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号