首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous dispersions of dipalmitoyl phosphatidyl choline exhibit a sharp decrease in turbidity at the crystal-liquid phase transition temperature of 41°C. The intensity of light scattered at 45°, 90°, and 135° also undergoes a sharp drop at the same temperature. Similarly, the refractive index of such dispersions decreases abruptly with the phase transition. Employing the relationship between light scattering intensity and specific refractive increment, it can be shown that about one half of the change in absorbancy and scattering are accounted for by the change in refractive index. The change in refractive index can be entirely accounted for by the known expansion and corresponding decrease in density of the bilayer. That part of the observed change in scattering and turbidity which is not accounted for by the observed change in average refractive index is apparently due to a decrease in the anisotropy of the bilayer during the melting process. Calculations based on a model which, although oversimplified, is consistent with the known thinning of the bilayer during the melting process, give quantitative agreement with experimental results. Below the phase transition temperature other changes in optical properties are observed; near 32°C, the light scattering envelope changes and the turbidity of dispersions drops markedly. The average refractive index remains constant in this region. For this and other reasons, it is postulated that these pre-transition changes indicate an aggregation-disaggregation phenomenon.  相似文献   

2.
Liposomes can be used as carriers of drugs in the treatment of viral, bacterial and protozoal infections. The potential for liposome-mediated therapy of Mycobacterium avium-intracellulare complex infections, one of the most common opportunistic infections in AIDS, is currently under study. Here, we have investigated the effect of the lipid-soluble antimycobacterial drugs ansamycin, clofazimine and CGP7040 on the thermotropic behavior of liposomes composed of dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) using differential scanning calorimetry (DSC). In the presence of ansamycin (rifabutine), the peak gel-liquid crystalline phase transition temperature (Tm) of DPPG was reduced, as was the sub-transition temperature (Ts), whereas the Tm of DPPC was reduced only slightly. The temperature of the pre-transition (Tp) of DPPC was lowered, while the pre-transition of DPPG was abolished. Ansamycin also caused the broadening of the transition endotherm of both lipids. Equilibration of the drug/lipid complex for 1 or 5 days produced different thermotropic behavior. In the presence of clofazimine, the cooperativity of the phase transition of DPPG decreased. Above 10 mol% clofazimine formed two complexes with DPPG, as indicated by two distinguishable peaks in DSC thermograms. The Tm of both peaks were lowered as the mole fraction increased. Clofazimine had minimal interaction with DPPC. In contrast, CGP7040 interacted more effectively with DPPC than with DPPG, causing a reduction of the size of the cooperative unit of DPPC even at 2 mol%. The main transition of DPPC split into 3 peaks at 5 mol% drug. The pre-transition was abolished at all drug concentrations and the sub-transition disappeared at 10 mol% CGP7040. These studies suggest that maximal encapsulation of clofazimine in liposomes would require a highly negatively charged membrane, while that of CGP7040 would necessitate a zwitterionic membrane. We have also investigated the interaction of the water-soluble antibiotic pentamidine, which has been used against Pneumocystis carinii, the most lethal of AIDS-related opportunistic pathogens. Aerosol administration of this drug leads to long-term sequestration of the drug in the lungs. The DPPG/pentamidine complex exhibited a pre-transition at 3.5 degrees C, an endothermic peak at 42 degrees C, and an exothermic peak at 44.5 degrees C, followed by another endothermic peak at 55 degrees C. The exotherm depended on the history of the sample, requiring pre-incubation for several minutes below the 42 degrees C transition. These observations suggest that upon melting of the DPPG chains at 42 degrees C, the DPPG crystallizes as a DPPG/pentamidine complex that melts at 55 degrees C.  相似文献   

3.
The interaction of melittin, a polypeptide consisting of 26 amino acid residues, with dimyristoyl phosphatidylcholine bilayers was investigated by vibrational Raman spectroscopy. Spectral peak height intensity ratios, involving vibrational transitions in both the 3000 cm?1 acyl chain methylene carbon-hydrogen stretching mode region and the 1100 cm?1 acyl chain carbon-carbon skeletal stretching mode interval, served as temperature profile indices for monitoring the bilayer order-disorder processes. For a lipid : melittin molar ratio of 14 : 1 two order-disorder transitions were observed. In comparison to a gel to liquid crystalline phase transition of 22.5°C for the pure lipid, the lower transition, exhibiting a 2°C width, is centered at 17°C and is associated with a depression of the main lipid phase transition of dimyristoyl phosphatidylcholine. The second thermal transition, displaying a 7°C interval, occurs at approx. 29°C and is associated with the melting behavior of approximately seven immobilized boundary lipids which surround the inserted hydrophobic segment of the polypeptide. For a lipid : melittin molar ratio of 10 : 1 two thermal transitions are also observed at 11 and 30°C. As before, they represent, respectively, the main gel to liquid crystalline phase transition and the melting behavior of approximately four boundary lipids attached to melittin. From these data alternative schemes are suggested for disposing the immobilized lipids around the hydrophobic portion of the polypeptide within the bilayer.  相似文献   

4.
The importance of glucan chains that pass through both the amorphous and crystalline lamellae (tie chains) in the organization of corn starch granules was studied using heat‐moisture treatment (HMT), annealing (ANN), and iodine binding. Molecular structural analysis showed that hylon starches (HV, HVII, and HVIII) contained higher proportion of intermediate glucan chains (HVIII > HVII > HV) than normal corn (CN) starch. Wide angle X‐ray scattering revealed that on HMT, the extent of polymorphic transition in hylon starches decreased with increasing proportion of intermediate and long chains. Iodine treated hylon starches exhibited increased order in the V‐type polymorphism as evidenced by the intense peak at 20° 2θ and the strong reflection intensity at 7.5° 2θ and the extent of the change depended on the type of hylon starch. DSC results showed that the gelatinization enthalpy of CN and waxy corn starch (CW) remained unchanged after ANN. However, hylon starches showed a significant increase in enthalpy with more distinct endotherms after ANN. It can be concluded that tie chains influence the organization of crystalline lamellae in amylose extender mutant starches. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 871–885, 2014.  相似文献   

5.
The interactions of the antibiotic polymixin B, a polycationic cyclic polypeptide containing a branched acyl side chain, with dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidic acid (DMPA) bilayers were investigated by Raman spectroscopy for a wide range of lipid/polypeptide mole fractions. Temperature profiles, constructed from peak height intensity ratios derived from the lipid methylene C-H stretching and acyl chain C-C stretching mode regions, reflected changes originating from lateral chain packing effects and intrachain trans / gauche rotamer formation, respectively. For DMPC/polymyxin B bilayers the temperature dependent curves indicate a broadening of the gel-liquid crystalline phase transition accompanied by an approx. 3 C deg. increase in the phase transition temperature from 22.8°C for the pure bilayer to 26°C for the polypeptide complex. For a 10:1 lipid/polypeptide mole ratio the temperature profile derived from the C-C mode spectral parameters displays a second order/disorder transition, at approx. 35.5°C, associated with the melting behavior of approximately three bilayer lipids immobilized by the antibiotic's charged cyclic headgroup and hydrophobic side chain. For the 10:1 mole ratio DMPA/polypeptide liposomes, the temperature profiles indicate three order/disorder transitions at 46, 36 and 24°C. Pure DMPA bilayers display a sharp lamellar-micellar phase transition at 51°C.  相似文献   

6.
Modulated differential scanning calorimetry, wide angle x-ray scattering, and environmental scanning electron microscopy were used to investigate the physical and morphological properties of chicory root inulin spray dried under different conditions. When the feed temperature increased up to 80 °C, the average degree of polymerization of the solubilized fraction increased, leading to a higher glass transition temperature (Tg). Above 80 °C, the samples were completely amorphous, and the Tg did not change. The starting material was semicrystalline, and the melting region was composed of a dual endotherm; the first peak subsided as the feed temperature increased up to a temperature of 70 °C, whereas above 80 °C, no melting peak was observed as the samples were completely amorphous. To a lesser extent, the inlet air temperature of 230 °C allowed a higher amorphous content of the samples than at 120–170 °C but induced a blow-out of the particles.  相似文献   

7.
This paper is the characterization of a new material comprised of oil, water, monostearin and stearic acid, which can be used as a heart-friendly, low-saturate, trans fatty acid-free spreadable fat and shortening. Oil–water–monstearin mixtures formed a gel above 2% monostearin and 30% water and were stable over a month’s time. An increase in the storage modulus (G′), and peak melting temperature (T m) was observed over time, which suggests a slow change in structure to a more solid form. Powder x-ray diffraction measurements at temperatures above the Krafft temperature of the monglyceride (57°C) indicated the existence of a lamellar liquid crystalline phase $ {\left( {L_{\alpha } } \right)} This paper is the characterization of a new material comprised of oil, water, monostearin and stearic acid, which can be used as a heart-friendly, low-saturate, trans fatty acid-free spreadable fat and shortening. Oil–water–monstearin mixtures formed a gel above 2% monostearin and 30% water and were stable over a month’s time. An increase in the storage modulus (G′), and peak melting temperature (T m) was observed over time, which suggests a slow change in structure to a more solid form. Powder x-ray diffraction measurements at temperatures above the Krafft temperature of the monglyceride (57°C) indicated the existence of a lamellar liquid crystalline phase with a (001) reflection occurring at 50 ?. In addition to the 50 ? reflection at small angles, a wide angle reflection at 4.2 ? was observed upon cooling below 60°C, indicating a transition from the to the phase, which upon storage at 22°C for one day converted to the coagel, or β-gel phase.  相似文献   

8.
Analysis of the shape of the small-angle X-ray scattering (SAXS) intensity profiles obtained from suspensions of wheat starch granules in water gives information on the amount of absorption into the different regions of the granule. At room temperature, less water is absorbed into the granules the higher the starch concentration. At 51°C, the beginning of the gelatinisation region, lower amounts of water are absorbed when the concentration of starch is high and there is less loss of crystalline order. In an excess of water, co-operative melting occurs, whereas, with less water, the absorption is insufficient to destabilise the crystalline order. The beam damage at room temperature is reflected in a slight increase in order, possibly due to rearrangement after chain scission.  相似文献   

9.
Thermotropic changes in the transverse order of microsomal membranes isolated from Tetrahymena are revealed by low-angle X-ray diffraction. These are correlated with the lateral order of the membrane lipids by wide-angle X-ray diffraction. Upon lowering the temperature from 28 °C to 2 °C, the Bragg period of the membrane stack reveals an abrupt increase of ~3.0 nm at ~19 °C, which is reversible upon reheating to 28 °C. This is coupled with an alteration in the electron density profile, revealing a shift of mass from the hydrophobic core towards one of the two hydrophilic surfaces. Between 35 °C and 0 °C, the membrane lipids undergo a broad, thermotropic “two-stage” liquid crystalline ? crystalline phase separation with a “breakpoint” at ~18 °C. This breakpoint signals an abrupt lipid redistribution, presumably due to a change in the composition of the two coexisting liquid crystalline and crystalline lipid phases. We conclude: (1) the temperature-induced mass shift reflects a shift in the transverse partition of proteins in membranes; (2) this is triggered by an abrupt lipid redistribution occurring during a broad liquid crystalline ? crystalline phase separation.  相似文献   

10.
Wild-type (WT) plants of potato (Solanum tuberosum L.) and their transgenic forms carrying agrobacterial genes rolB or rolC under the control of B33 class I patatin promoter were cultured in vitro on MS medium with 2% sucrose in a controlled-climate chamber at 16-h illumination and 22°C. These plants were used as a source of single-node stem cuttings, which were cultured in darkness on the same medium supplemented with 8% sucrose. The tubers formed on them were used for determination of the structure of native starch using the methods of differential scanning microcalorimetry (DSC), X-ray scattering, and scanning electron microscopy. It was found that, in starch from the tubers of rolB-plants, the temperature of crystalline lamella melting was lower and their thickness was less than in WT potato. In tubers of rolC plants, starch differed from starch in WT plants by a higher melting temperature, considerably reduced melting enthalpy, and a greater thickness of crystalline lamellae. Deconvolution of DSC thermogram makes it possible to interpret the melting of starch from the tubers of rolC plants as the melting of two independent crystalline structures with melting temperatures of 65.0 and 69.8°C. Electron microscopic examination confirmed the earlier obtained data indicating that, in the tubers of rolC plants, starch granules are smaller and in the tubers of rolB plants larger than in WT plants. Possible ways of influence of rol transgenes on structural properties of starch in amyloplasts of potato tubers are discussed.  相似文献   

11.
Uniaxially oriented films with high tensile strength were processed from ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] (P(3HB)) by a method combining hot-drawing near the melting point of the polymer and two-step-drawing at room temperature. In a two-step-drawn and subsequently annealed film, P(3HB) molecular chains fall into two states: 2/1 helix (alpha-form) and planar zigzag (beta-form) conformations. The mechanism for generating the beta-form during two-step-drawing was investigated by time-resolved synchrotron wide- and small-angle X-ray scattering measurements (WAXD and SAXS), together with the measurement of stress-strain curves. It was found that the improvement of mechanical properties is due to not only the orientation of molecular chains but also the generation of the beta-form during the drawing. The crystal and molecular structures of the alpha-form remained unchanged until the yield point of the stress-strain curve. At the yield point, the long period obtained from SAXS doubled and a new reflection indicative of the beta-form was observed on the equatorial line in WAXD. The intensity of the reflection from the beta-form increased with an increase in the two-step-drawing ratio at room temperature. The SAXS pattern changed from a two-point reflection along the meridian to a cross pattern with streaking on the equatorial line, demonstrating the close alignment of shish-kebab structures. The reflection intensity, crystal orientation and crystal size of the alpha-form decreased during two-step-drawing. Based on these results, the beta-form is mainly introduced from the orientation of free molecular chains in the amorphous regions between alpha-form lamellar crystals, but the structural transformation of molecular chains also occurs from the alpha-form to the beta-form at the deformed lamellar crystals.  相似文献   

12.
A L Nguyen  B T Vu  G L Wilkes 《Biopolymers》1974,13(5):1023-1037
The dielectric, dynamic mechanical, and melting (denaturation) behavior of reconstituted collagen has been investigated. Dynamic mechanical properties are reported for the range of temperature from ?100 to 220°C. Dielectric properties are reported for the range of temperature from ?120 to 90°C. Possible origins of dynamic mechanical and dielectric relaxations are discussed. Effect of moisture content on mechanical and dielectric behavior is also presented. The melting process of collagen immersed in diluents as well as that of dry collagen were studied by the techniques of hot-stage polarizing microscopy, differential thermal analysis, thermal mechanical analysis, and small-angle light scattering. It was concluded that the melting point of dry collagen is about 217°C.  相似文献   

13.
Melting and premelting phenomenon in DNA by laser Raman scattering.   总被引:14,自引:0,他引:14  
Raman spectra of DNA from calf thymus DNA have been taken over a wide range of temperatures (25°–95°) in both D2O and H2O. A study of the temperature dependence of the Raman spectra shows that the temperature profiles of the intensities and frequencies of the various bands fall into four different categories: (1) base bands that show a reversible increase in intensity prior to the melting region, i.e., a definite premelting phenomenon; (2) base bands that show little or no temperature dependence; (3) deoxyribose-phosphate backbone vibrations that show no temperature dependence up to the melting region, at which point large decreases in intensity occur; and (4) slow frequency changes in certain in-plane vibrations of guanine and adenine due to deuteration of the C-8 hydrogen of these purines in D2O. Certain Raman bands arising from each of the four bases, adenine, thymine, guanine, and cytosine have been found to undergo a gradual increase in intensity prior to the melting region at which point large, abrupt increases in intensity occur. The carbonyl stretching band of thymine, involved in the interbase hydrogen bonding actually undergoes both a gradual shift to a lower frequency as well as an increase in intensity. These changes provide evidence that some change in the geometry of the bases relative to each other begins to occur around 50°C, well below the melting region of 70°–85°C. From the spectra taken at various temperatures, the DNA appears to remain in the B conformation until the melting point is reached, at which time the DNA progresses into a disordered random-coil form. No A-form conformation is found either in the premelting or the melting region.  相似文献   

14.
N Sasaki  S Shiwa  S Yagihara  K Hikichi 《Biopolymers》1983,22(12):2539-2547
The temperature dependence of the humidity-sensitive spacing, d, related to the lateral packing of collagen molecules was measured for fully hydrated collagen. In the vicinity of 0°C, a sudden change in d was observed, which was reversible with temperature. In the diffraction profile, below 0°C, a set of diffraction peaks identified with the hexagonal crystalline form of ice was observed. With the reduction in water content, the intensity of the set of diffraction peaks decreased and was found to be zero at a water content of 0.38 g/g collagen. These results were considered to be caused by the frozen water in collagen fibril below 0°C. According to the water content dependence of d, it was considered that up to a certain water content water absorbed would be stowed in the intermolecular space of collagen and above that water content water molecules would aggregate to make pools, i. e., extrafibrillar spaces. The unfreezable bound water was considered to be located in the intermolecular space of collagen. Size of the extrafibrillar space, determined from the intensity analysis of a smallangle x-ray scattering pattern, corroborates the speculation that the water showed in the extrafibrillar space is freezable and free. The formation of the hexagonal crystalline form of ice in the extrafibrillar space was considered to cause the sudden change in d at 0°C.  相似文献   

15.
Sonicated dispersions of 1,2-dipalmitoylsn-glycero-3-phosphorylcholine and of 1,3-dipalmitoylglycero-2-phosphorylcholine were examined by proton nuclear magnetic resonance (NMR) as a function of temperature. The —(CH2)n)— peak in the spectrum of the sn-3-isomer of dipalmitoylphosphatidylcholine showed the characteristic dramatic changes in the peak intensity and width associated with the phase transition between the liquid crystalline and gel states of the phospholipid. This occurred over a 2–3°C temperature range with the midpoint of the transition at 38.5°C. With the 2-isomer the change in phase took place over a similar temperature range but the midpoint was at 33.8°C. This lower phase transition temperature is presumably the result of increased acyl chain mobility caused by the increased separation of the two acyl chains by the centre carbon of the glycerol backbone. The effect of sonication of the broadening of the range and lowering of the midpoint temperature of the phase transition from that of the corresponding unsonicated dispersions was similar with each isomer. This suggests that the overall geometry of the sonicated vesicles of the isomers is similar.  相似文献   

16.
Coupled climate–ecosystem models predict significant alteration of temperate forest biome distribution in response to climate warming. Temperate forest biomes contain approximately 10% of global soil carbon (C) stocks and therefore any change in their distribution may have significant impacts on terrestrial C budgets. Using the Sierra Nevada as a model system for temperate forest soils, we examined the effects of temperature and soil mineralogy on soil C mineralization. We incubated soils from three conifer biomes dominated by ponderosa pine (PP), white fir (WF), and red fir (RF) tree species, on granite (GR), basalt (BS), and andesite (AN) parent materials, at three temperatures (12.5°C, 7.5°C, 5.0°C). AN soils were dominated by noncrystalline materials (allophane, Al‐humus complexes), GR soils by crystalline minerals (kaolinite, vermiculite), and BS soils by a mix of crystalline and noncrystalline materials. Soil C mineralization (ranging from 1.9 to 34.6 [mg C (g soil C)?1] or 0.1 to 2.3 [mg C (g soil)?1]) differed significantly between parent materials in all biomes with a general pattern of ANδ13C values of respired CO2 suggest greater decomposition of recalcitrant soil C compounds with increasing temperature, indicating a shift in primary C source utilization with temperature. Our results demonstrate that soil mineralogy moderates soil C mineralization and that soil C response to temperature includes shifts in decomposition rates, mineralizable pool size, and primary C source utilization.  相似文献   

17.
C A Hoeve  P C Lue 《Biopolymers》1974,13(8):1661-1680
The dielectric constant and the loss factor of water in collagen are measured for various water, NaCl, and HCl contents at frequencies ranging from 102 to 105 Hz and at temperatures ranging from ?70° to +23°C. For all measurements, both the dielectric constant and the loss decrease monotonically as the frequency increases, or the temperature decreases; the absence of a maximum in the loss curves as a function of temperature and frequency indicates an extremely broad spectrum of relaxation times. By shifting the curves obtained for the dielectric constant and the loss factor along the log–frequency axis, all data, obtained at different temperatures, can be represented on master curves valid for 23°C. In order to explain these results, water molecules are assumed to be hydrogen bonded to each other in long chains. All water molecules in a chain can, cooperatively, be oriented in two different directions along the channel, resulting in large, reversible, dipole moments. These chains are not rigid, but are flexible liquid-like structures. Diffusion of chains as entities is assumed to be the rate-limiting step for dipole reorientation. Although the rate of diffusion decreases inversely proportional to chain length, the activation energy is independent of chain length. At lower temperatures, diffusion becomes slower, until at the glass point, approximately ?100°C, it ceases.  相似文献   

18.
Meibomian lipids are the primary component of the lipid layer of the tear film. Composed primarily of a mixture of lipids, meibum exhibits a range of melt temperatures. Compositional changes that occur with disease may alter the temperature at which meibum melts. Here we explore how the mechanical properties and structure of meibum from healthy subjects depend on temperature. Interfacial films of meibum were highly viscoelastic at 17°C, but as the films were heated to 30°C the surface moduli decreased by more than two orders of magnitude. Brewster angle microscopy revealed the presence of micron-scale inhomogeneities in meibum films at higher temperatures. Crystalline structure was probed by small angle x-ray scattering of bulk meibum, which showed evidence of a majority crystalline structure in all samples with lamellar spacing of 49 Å that melted at 34°C. A minority structure was observed in some samples with d-spacing at 110 Å that persisted up to 40°C. The melting of crystalline phases accompanied by a reduction in interfacial viscosity and elasticity has implications in meibum behavior in the tear film. If the melt temperature of meibum was altered significantly from disease-induced compositional changes, the resultant change in viscosity could alter secretion of lipids from meibomian glands, or tear-film stabilization properties of the lipid layer.  相似文献   

19.
Hydrogels comprising acrylic coumarin (AC) and acrylic Pluronic F-127 (APF) were prepared by a free radical reaction and its photo- and thermal-responsive release property was investigated using methylene blue as a solute. AC and APF were prepared successfully, confirmed by 1H NMR spectroscopy. The molar ratio of Pluronic F-127 chain to vinyl group of APF was 1:1.3, suggesting that diacrylic Pluronic F-127 which could act as a cross-linker for the formation of polymer networks was produced. The coumaryl groups of AC were dimerized as much as 60.1% by 2 h-UV irradiation. On the DSC thermogram, APF exhibited its melting point around 55.4°C, about 0.9°C lower than the melting point of Pluronic F-127. The gelling temperature of Pluronic F-127 solution (25% (w/v)) was about 40°C, determined by a viscometric method. The swelling ratio of the hydrogels increased up to greater than 8 in 30 min. The maximum release degree at 23 and 50°C of dye loaded in the hydrogels was suppressed by UV irradiation, possibly because of the photo-dimerization of coumaryl groups. The release degree at 50°C of dye loaded in the UV-treated hydrogels was lower as the content of APF was higher, possibly because the thermally induced gelation of the polymer chains could suppress the payload release from the hydrogels.  相似文献   

20.
Morphology, molecular structure, and thermal properties of potato starch granules with low to high phosphate content were studied as an effect of mild acid hydrolysis (lintnerization) to 80% solubilization at two temperatures (25 and 45°C). Light microscopy showed that the lintners contained apparently intact granules, which disintegrated into fragments upon dehydration. Transmission electron microscopy of rehydrated lintners revealed lacy networks of smaller subunits. The molecular composition of the lintners suggested that they largely consisted of remnants of crystalline lamellae. When lintnerization was performed at 45°C, the lintners contained more of branched dextrins compared to 25°C in both low and intermediate phosphate‐containing samples. High‐phosphate‐containing starch was, however, unaffected by temperature and this was probably due to an altered amylopectin structure rather than the phosphate content. After lintnerization, the melting endotherms were broad with decreased onset and increased peak melting temperatures. The relative crystallinity was lower in lintners prepared at 45°C. A hypothesis that combines the kinetics of lintnerization with the molecular and thermal characteristics of the lintners is presented. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 257–271, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号