首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of N-ethylmaleimide (MalNEt), or of fluoro dinitrobenzene to a suspension of Escherichia coli during the phosphorylating uptake of methyl-alpha-D-glucopyranoside (Me-Glc), a glucose analog, stops uptake and phosphorylation and causes the loss of previously accumulated sugar and of its phosphate ester. After removal of the reagents, the phosphotransferase system remains irreversibly inactive. Pretreatment of the bacteria with the same reagents under the same conditions of concentration, pH, temperature and for the same length of time causes very little inactivation. Mercuric chloride, a reversible inactivator, prevents the phosphotransferase system from reacting simultaneously with MaINEt or with fluorodinitrobenzene. This protection strongly suggests that all three reagents react with the same site, presumably an -SH group. The change which makes this site available to the reagents depends on the phosphorylative uptake of Me-Glc. Preload of the cells and efflux of Me-Glc do not achieve the same change. The rate of inactivation is directly proportional to the rate of phosphorylative uptake. When the Km of phosphorylative uptake is modified by an uncoupling agent, the substrate concentration allowing half maximal rate of inactivation by MaINEt changes accordingly. The reactive sites of the phosphotransferase system can also be made accessible to the -SH group reagents by fluoride inhibition of phosphoenolpyruvate synthesis. This suggests that the inactivator resistent form is an "energized form" of the enzyme. The unmasking of the reactive site is not due to a change in transmembrane penetration of the reagents since incubation of toluene treated cells with MaINEt in the presence of phosphoenolpyruvate fails to inactivate the phosphotransferase activity, while incubation with MaINEt plus Me-Glc causes fast inactivation.  相似文献   

2.
The membrane-bound component of the phosphotransferase system of Escherichia coli, responsible for the phosphorylative uptake of methyl-α-d-glucoside has an essential thiol group which becomes available to inactivation by thiol reagents in the presents of the phosphate-accepting sugar or when phosphoenolpyruvate synthesis is inhibited. The form resistant to the thiol reagent requires not only the absence of sugar and an intact phosphoenol-pyruvate generating system, but also an intact system generating phosphorylated Hpr which is impaired by heating of a thermosensitive enzyme I mutant.  相似文献   

3.
β-Glucoside transport by phosphoenolpyruvate-hexose phosphotransferase system in Escherichia coli is inactivated in vivo by thiol reagents. This inactivation is strongly enhanced by the presence of transported substrates. In a system reconstituted from soluble and membrane-bound components, only the particulate component, the membrane-bound enzyme IIbgl appeared as the target of N-ethylmaleimide inactivation. The same feature was found in the case of methyl-α-d-glucoside uptake via enzyme IIglc.It is shown that the sensitizing effect of substrates is specific and not generalized, methyl-α-d-glucoside only sensitizes enzyme IIbglc and p-nitrophenyl-β-d-glucoside only sensitizes enzyme IIbgl towards N-ethylmaleimide inactivation.The inactivation of enzyme IIbgl by thiol reagents is also promoted in vivo by fluoride inhibition of phosphoenolpyruvate synthesis. In toluene-treated bacteria, the presence of phosphoenolpyruvate protects against inactivation by thiol reagents of p-nitrophenyl-β-d-glucoside phosphorylation. Both results suggest that the inactivator resistent form of enzyme IIbgl is an energized form of the enzyme.  相似文献   

4.
Wedding RT  Dole P  Chardot TP  Wu MX 《Plant physiology》1992,100(3):1366-1368
Phosphoenolpyruvate carboxylase purified from leaves of maize (Zea mays, L.) is sensitive to the presence of urea. Exposure to 2.5 m urea for 30 min completely inactivates the enzyme, whereas for a concentration of 1.5 m urea, about 1 h is required. Malate appears to have no effect on inactivation by urea of phosphoenolpyruvate carboxylase. However, the presence of 20 mm phosphoenolpyruvate or 20 mm glucose-6-phosphate prevents significant inactivation by 1.5 m urea for at least 1 h. The inactivation by urea is reversible by dilution. The inhibition by urea and the protective effects of phosphoenolpyruvate and glucose-6-phosphate are associated with changes in aggregation state.  相似文献   

5.
A one step procedure is presented for the preparation of [32P]phosphoenolpyruvate from [γ-32P]ATP using pyruvate kinase. The reaction is carried out at chemical equilibrium and involves only an exchange of isotope between ATP and phosphoenolpyruvate. The initial phosphoenolpyruvate/ATP ratio in the reaction mixture determines the degree of 32P incorporation into phosphoenolpyruvate when isotopic equilibrium is achieved.  相似文献   

6.
In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C3-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte.  相似文献   

7.
8.
Insulin action on Escherichia coli was studied using wild type E. coli B/r and K12 strains and a number of phosphoenolpyruvate phosphotranferase mutants. In vivo, the effects of insulin on the differential rate of tryptophanase synthesis, The rate of α-methyglucoside uptake and the rate of growth on glucose were determined in E. coli B/r. in vitro, the effect of insulin on the adenylate cyclase and the phosphotransferase activities was determined using toluenized cell preparations of E. coli B/r, E. coli K12 and phosphotransferase mutant strains. The specificity of insulin action on E. coli was determined using glucagon, vasopressin and somatropin as well as insulin antisera. Results show the specific action of insulin n E. coli, inhibiting tryptophanase induction and adenylate cyclase activity, while stimulating growth on glucose and uptake and phosphorylation of α-methylglucosode  相似文献   

9.
Phosphoenolpyruvate phosphatase from Brassica nigra leaf petiole suspension cells has been purified 1700-fold to apparent homogeneity and a final specific activity of 380 micromole pyruvate produced per minute per milligram protein. Purification steps included: ammonium sulfate fractionation, S-Sepharose, chelating Sepharose, concanavalin A Sepharose, and Superose 12 chromatography. The native protein was monomeric with a molecular mass of 56 kilodaltons as estimated by analytical gel filtration. The enzyme displayed a broad pH optimum of about pH 5.6 and was relatively heat stable. Western blots of microgram quantities of the final preparation showed no cross-reactivity when probed with rabbit polyclonal antibodies prepared against either castor bean endosperm cytosolic pyruvate kinase, or sorghum leaf phosphoenolpyruvate carboxylase. The final preparation exhibited a broad substrate selectivity, showing high activity toward p-nitrophenyl phosphate, adenosine diphosphate, adenosine triphosphate, gluconate 6-phosphate, and phosphoenolpyruvate, and moderate activity toward several other organic phosphates. Phosphoenolpyruvate phosphatase possessed at least a fivefold and sixfold greater affinity and specificity constant, respectively, for phosphoenolpyruvate (apparent Michaelis constant = 50 micromolar) than for any other nonartificial substrate. The enzyme was activated 1.7-fold by 4 millimolar magnesium, but was strongly inhibited by molybdate, fluoride, zinc, copper, iron, and lead ions, as well as by orthophosphate, ascorbate, glutamate, aspartate, and various organic phosphate compounds. It is postulated that phosphoenolpyruvate phosphatase functions to bypass the adenosine diphosphate dependent pyruvate kinase reaction during extended periods of orthophosphate starvation.  相似文献   

10.
The effect of protein feeding and the addition of amino acids on the activity of hepatic phosphoenolpyruvate carboxykinase (GTP: oxalacetate carboxylyase (transphosphorylating), EC 4.1.1.32) was investigated in vivo and in the isolated perfused rat liver. Protein feeding resulted in a considerable increase in phosphoenolpyruvate carboxykinase activity within 6 h. This rise was independent of the presence of glucocorticoids.In the isolated perfused liver system amino acids per se had a small effect on phosphoenolpyruvate carboxykinase activity and led to an increase by 20% when glucocorticoids were present, but resulted in a rise by 100% when glucocorticoids plus dibutyryl cyclic AMP were added to the perfusion medium. The effect of amino acids in the presence of dibutyryl cyclic AMP could also be observed in the liver of glucocorticoid-deprived rats.Cycloheximide, a translational inhibitor, totally blocked all effects of amino acids on enzyme activity.These results indicate that the concentration of amino acids in the portal vein modify the regulation of phosphoenolpyruvate carboxykinase by cyclic AMP.  相似文献   

11.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

12.
The aim of this work was to determine which of the two reactions (i.e. phosphorylation or dephosphorylation) involved in the establishment of the phosphorylated status of the wheat leaf phosphoenolpyruvate carboxylase and sucrose phosphate synthase protein responds in vivo to NO3 uptake and assimilation. Detached mature leaves of wheat (Triticum aestivum L. cv Fidel) were fed with N-free (low-NO3 leaves) or 40 mm NO3 solution (high-NO3 leaves). The specific inhibition of the enzyme-protein kinase or phosphatase activities was obtained in vivo by addition of mannose or okadaic acid, respectively, in the uptake solution. Mannose at 50 mm, by blocking the kinase reaction, inhibited the processes of NO3-dependent phosphoenolpyruvate carboxylase activation and sucrose phosphate synthase deactivation. Following the addition of mannose, the deactivation of phosphoenolpyruvate carboxylase and the activation of sucrose phosphate synthase, both due to the enzyme-protein dephosphorylation, were at the same rate in low-NO3 and high-NO3 leaves, indicating that NO3 had no effect per se on the enzyme-protein phosphatase activity. Upon treatment with okadaic acid, the higher increase of phosphoenolpyruvate carboxylase and decrease of sucrose phosphate synthase activities observed in high NO3 compared with low NO3 leaves showed evidence that NO3 enhanced the protein kinase activity. These results support the concept that NO3, or a product of its metabolism, favors the activation of phosphoenolpyruvate carboxylase and deactivation of sucrose phosphate synthase in wheat leaves by promoting the light activation of the enzyme-protein kinase(s) without affecting the phosphatase(s).  相似文献   

13.
The assimilation of NH4+ causes a rapid increase in respiration to provided carbon skeletons for amino acid synthesis. In this study we propose a model for the regulation of carbon partitioning from starch to respiration and N assimilation in the green alga Selenastrum minutum. We provide evidence for both a cytosolic and plastidic fructose-1,6-bisphosphatase. The cytosolic form is inhibited by AMP and fructose-1,6-bisphosphate and the plastidic form is inhibited by phosphate. There is only one ATP dependent phosphofructokinase which, based on immunological cross reactivity, has been identified as being localized in the plastid. It is inhibited by phosphoenolpyruvate and activated by phosphate. No pyrophosphate dependent phosphofructokinase was found. The initiation of dark ammonium assimilation resulted in a transient increase in ADP which releases pyruvate kinase from adenylate control. This activation of pyruvate kinase causes a rapid 80% drop in phosphoenolpyruvate and a 2.7-fold increase in pyruvate. The pyruvate kinase mediated decrease in phosphoenolpyruvate correlates with the activation of the ATP dependent phosphofructokinase increasing carbon flow through the upper half of glycolysis. This increased the concentration of triosephosphate and provided substrate for pyruvate kinase. It is suggested that this increase in triosephosphate coupled with the glutamine synthetase mediated decline in glutamate, serves to maintain pyruvate kinase activation once ADP levels recover. The initiation of NH4+ assimilation causes a transient 60% increase in fructose-2,6-bisphosphate. Given the sensitivity of the cytosolic fructose-1,6-bisphosphatase to this regulator, its increase would serve to inhibit cytosolic gluconeogenesis and direct the triosephosphate exported from the plastid down glycolysis to amino acid biosynthesis.  相似文献   

14.
The effect of 5-5′-dithiobis-2-nitrobenzoate (DTNB) on the kinetic parameters and structure of phosphoenolpyruvate carboxylase purified from maize (Zea mays L.) has been studied. The Vmax is found to be independent of the presence of this thiol reagent. The Km is increased upon oxidation of cysteines by DTNB. At a substrate concentration higher than Km (3.1 millimolar Mgphosphoenolpyruvate), a significant reversible decrease of the activity is observed. Malate has little effect in preventing the modification of these cysteines. The V type inhibition by malate was also studied at a saturating phosphoenolpyruvate level (9.3 millimolar Mgphosphoenolpyruvate). In the presence of 50 micromolar DTNB, up to 60% inhibition is caused by 15 millimolar malate; however, in the presence of both 50 micromolar DTNB and 50 millimolar dithiothreitol (DTT) this inhibition is reduced to 20%. The presence of DTT alone increases the size of the phosphoenolpyruvate carboxylase molecule as determined by light scattering. The activity at nonsaturating substrate concentration is increased by 36% in the presence of DTT. The oligomerization equilibrium between the dimer and the tetrameric form of the enzyme is affected by cysteine. The Km for the substrate, the sensitivity toward malate, and the size of the enzyme are found to be modified upon incubation in the presence of DTT.  相似文献   

15.
The chemical modification of phosphoenolpyruvate carboxylase purified from Crassula argentea leaves was studied using the fluorescence of the extrinsic probe 8-anilino-1-naphalenesulfonate. The effects of ligands on kinetic parameters of phosphoenolpyruvate carboxylase activity, and its response to pH and metal cations, were associated with the binding of the ligands to the enzyme as measured by fluorescence. Binding of the ligands phosphoenolpyruvate, malate, and glucose-6-phosphate revealed by fluorescence measurements corresponds to competitive phenomena observed in kinetic studies. The fluorescence measurements also suggest the involvement of specific amino acids in the binding of a given ligand. Arginyl residues modified by 2,3-butanedione appear to be directly involved in the binding of phosphoenolpyruvate and malate to the active and the inhibition sites, respectively. A histidyl residue was involved in the binding of malate, accounting for the lack of inhibition by malate in kinetic studies of the enzyme treated with diethylpyrocarbonate. Although activity was lost, there was no decrease in the ability of the treated enzyme to bind phosphoenolpyruvate, suggesting that additional histidyl residues are essential for activity although not directly involved in the binding of phosphoenolpyruvate. The lysine reagent trinitrobenzenesulfonate caused a loss of activity and a reduction in malate inhibition and glucose-6-phosphate activation, but these modifications were not related to changes in the ability of the enzyme to bind any of the three ligands. This suggests that lysine residues were not directly involved in the binding of these ligands.  相似文献   

16.
Fluorescein isothiocyanate inactivates phosphoenolpyruvate carboxylasefrom maize leaves, presumably by reacting with lysyl groups.The reaction appears to involve at least two groups of lysineson the enzyme. The more rapid reaction is with groups whichare protected by the substratemagnesium phosphoenolpyruvateand thus probably are located in the active site. In addition,fluorescein isothiocyanate apparently binds more slowly at asite which desensitizes the enzyme to activation by glucose-6-phosphate. Using the fluorescence of the complex of fluorescein isothiocyanatewith phosphoenolpyruvate carboxylase it was shown that bothmagnesium phosphoenolpyruvate and glucoses-6-phosphate causechanges in the conformation of the enzyme and influence thebinding of fluorescein isothiocyanate as well. Light scattering measurements showed that fluorescein isothiocyanateinduced disaggregation of the enzyme, while glucose-6-phosphatecaused aggregation, although less when fluorescein isothiocyanatewas present. 1Supported in part by National Science Foundation grant no.DMB 88-12484.  相似文献   

17.
Catabolite inactivation of phosphoenolpyruvate carboxykinase was studied in yeast spheroplasts using 0.9 M mannitol or 0.6 M potassium chloride as the osmotic support. In the presence of potassium chloride the rate of catabolite inactivation was nearly the same as that occurring in intact yeast cells under different conditions of incubation. However, in the presence of mannitol, catabolite inactivation in spheroplasts was prevented. The mannitol inhibition of catabolite inactivation was released by addition of ammonium or phosphate ions. At a concentration of 0.3 M ammonium or 0.06 M phosphate ions, the maximum rate of catabolite inactivation in spheroplasts suspended in mannitol was achieved and was comparable with that observed in spheroplasts incubated in 0.6 M potassium chloride as the osmotic stabilizer. Sodium sulfate (0.04 and 0.4 M) or potassium chloride (0.06 and 0.6 M) did not release the mannitol inhibition of catabolite inactivation in spheroplasts. In intact yeast cells, 0.9 M mannitol, 0.08 M ammonium or 0.1 M phosphate ions did not influence the rate of catabolite inactivation. The nature of the effects of mannitol, ammonium and phosphate ions on catabolite inactivation in yeast spheroplasts is disscussed.  相似文献   

18.
The activity of adenylate cyclase of Escherichia coli measured in toluene-treated cells under standard conditions is subject to control by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Sugars such as glucose, which are transported by the PTS, will inhibit adenylate cyclase provided the PTS is functional. An analysis was made of the properties of E. coli strains carrying mutations in PTS proteins. Leaky mutants in the PTS protein HPr are similar to wild-type strains with respect to cAMp regulation; adenylate cyclase activity in toluene-treated cells and intracellular cAMP levels are in the normal range. Furthermore, adenylate cyclase in toluene-treated cells of leaky HPr mutants is inhibited by glucose. In contrast, mutations in the PTS protein Enzyme I result in abnormalities in cAMP regulation. Enzyme I mutants generally have low intracellular cAMP levels. Leaky Enzyme I mutants show an unusual phosphoenolpyruvate-dependent activation of adenylate cyclase that is not seen in Enzyme I+ revertants or in Enzyme I deletions. A leaky Enzyme I mutant exhibits changes in the temperature-activity profile for adenylate cyclase, indicating that adenylate cyclase activity is controlled by Enzyme I. Temperature-shift studies suggest a functional complex between adenylate cyclase and a regulator protein at 30 °C that can be reversibly dissociated at 40 °C. These studies further support the model for adenylate cyclase activation that involves phosphoenolpyruvate-dependent phosphorylation of a PTS protein complexed to adenylate cyclase.  相似文献   

19.
The regulation of carbonic anhydrase (CA) activity in maize (Zea mays L.) leaves by light and nitrogen nutrition was determined. CA activity increased by more than 100-fold in illuminated leaves and decreased in leaves placed in the dark; low levels of CA activity were observed in leaves illuminated with low light intensities. CA activity was reduced in plants grown under nitrogen deficiency and recovered only slowly when supplemented with nitrate. Parallel studies were conducted to follow the levels of phosphoenolpyruvate carboxylase. Experiments indicate that the level of CA and phosphoenolpyruvate carboxylase present in leaves may be controlled by similar mechanisms.  相似文献   

20.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号