首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sugar-specific component of the lactose transport system in Staphylococcus aureus, Factor IIIlac, is phosphorylated as an intermediate in the over-all transfer of a phosphoryl group from PEP to lactose. P-IIIlac is isolated and shown to be a substrate for the final phosphoryl transfer reaction to sugar, catalyzed by Enzyme IIlac.  相似文献   

2.
Low concentrations of sodium dodecyl sulfate (0.015%) and sodium deoxycholate (0.33%) completely inhibit phosphorylation of β-galactosides by the lactose phosphotransferase system of Staphylococcus aureus. Inhibition is reversible, even after prolonged detergent treatment. Phosphorylation of methyl-α-glucoside by the same preparations is only slightly inhibited by 0.015% dodecyl sulfate. The membrane-bound component, Enzyme IFlac, is not solubilized by 0.015% dodecyl sulfate, nor is its ability to bind [14C]lactose affected. The results are consistent with hypotheses of selective binding of anionic detergent to Enzyme IIlac or to Factor IIIlac, the detergent serving in the latter case as a membrane analog.  相似文献   

3.
The crystalline acid carboxypeptidase from Penicillium janthinellum IFO-8070 was stabilized by the addition of nonionic surfactants, such as Triton X-100, Brij 35, Span 40, and Tween 20. In the presence of these stabilizers, extremely diluted enzyme (0.3 μg/ml of 50 mm sodium acetate buffer, pH 3.7) was almost completely stable after 2 days incubation at 25°C. About 35% and 20% of the enzyme activities were activated by the addition of Triton X-100 and Brij 35, respectively. Triton X-100 completely retarded inactivation at freezing (?15°C). On the other hand, anionic surfactants of SLS and LBSA, and cationic surfactant of cetyltrimethylammonium bromide strongly inactivated the enzyme. The inhibition of the fatty acid series was roughly proportional to the molecular weight of the inhibitor. Di-, and Tri-carboxylic acids also inhibited the enzyme activity.  相似文献   

4.
Multiple forms of neutral α-glucosidase (pH optima, 6.0~6.5) were purified from pig duodenal mucosa by a procedure including Triton X-100 treatment, fractionation with ammonium sulfate, fractionation with ethyl alcohol, DEAE-cellulose column chromatography and preparative polyacrylamide disc gel electrophoresis. All of the α-glucosidases, Ia, IIa, Ib and IIb, were found to be homogeneous on polyacrylamide disc gel electrophoresis. The molecular weights, isoelectric points and optimum temperatures of α-glueosidases Ia and IIa were 145,000~150,000, pH 3.5~3.7 and 55°C, respectively, and both enzymes were stable up to 55°C on treatment at pH 6.0 for 15 min; whereas those of the other two α-glucosidases, Ib and IIb, were 80,000, pH 4.0~4.1 and 65°C, respectively, and both enzymes were stable up to 70°C on the same treatment. The Km values of enzyme IIa for maltose, maltotriose and amylose were 1.72mm, 0.37 mm and 1.67mg/ml, while those of enzyme IIb were 3.33 mm, 2.61 mm and 11.8 mg/ml, respectively. All enzyme hydrolyzed α-1,4-, α-1,3- and α-1,2-glucosidic linkages in substrates, but showed no activity on sucrose or isomaltose. Enzymes IIa and IIb hydrolyzed phenyl α-maltoside to glucose and phenyl α-glucoside, and maltotriose was formed as the main α-glucosyltransfer product from maltose. It was revealed that two types of neutral α-glucosidases having no activity toward sucrose or isomaltose existed in pig duodenal mucosa, and that one type comprised α-glucosidase having both maltose- and amylaceous α-glucan-hydrolyzing activities and the other type heat-stable maltooligosaccharidases which hydrolyzed amylaceous α-glucan weakly.  相似文献   

5.
6.
An extracellular phospholipase D from Actinomadura sp. Strain No. 362 was purified about 430-fold from the culture filtrate. The purified enzyme preparation was judged to be homogeneous on polyacrylamide gel electrophoresis. The molecular weight and isoelectric point of the enzyme were estimated to be about 50,000—60,000 and 6.4, respectively. The enzyme was most active at pH 5.5 and 50°C in the presence of Triton X-100, but showed the highest activity at pH 7.0 and 60 — 70°C in its absence. The enzyme was stable up to 30°C at pH 7.2 and also stable in the pH range of 4.0 to 8.0 on 2 hr incubation at 25°C. With regard to substrate specificity, this enzyme hydrolysed lecithin best among the phospholipids tested. It was activated by Fe3 +, Al3+, Mn2 +, Ca2 +, diethyl ether, sodium deoxycholate and Triton X-100, but was inhibited by cetyl pyridinium chloride and dodecylsulfate.  相似文献   

7.
8.
We have studied the effects of cations and detergents on the structure (molecular weight) and photochemistry of Triton X-100 Photosystem II subchloroplast particles (TSF-IIa). The effect of Mg2+ ions on activity depended on the Triton X-100 content of the preparation. If the residual Triton X-100 was not removed prior to assay, MgCl2 increased the rate of electron transport, acting at a site on the reducing side of Photosystem II. Lowering the pH also increased the rate of electron transport. If the Triton X-100 was removed from the particles, both MgCl2 and NaCl caused a decrease in the rate of electron transport. Addition of Triton X-100 caused a reversible decrease in the number of active Photosystem II reaction centers. Both cations and Triton X-100 had a profound effect on the molecular weight of the Photosystem II particles as determined by gel filtration. At 20 °C, addition of 0.05% Triton X-100 decreased the molecular weight from a high value (≥800,000) to 250,000. At 4 °C, addition of 1 mm MgCl2 or 100 mm NaCl increased the molecular weight of the complex. In the absence of these salts 67% of the protein eluted with a molecular weight of 460,000 (the rest was >800,000-in the void volume). In the presence of these salts all of the material had a molecular weight of ≥800,000. A similar effect was observed when the pH was lowered from 8 to 6. Further work is needed to determine whether there is a correlation between the changes in molecular weight and activity.  相似文献   

9.
10.
Resting cells of the methanogen strain HU, a formate-utilizing methanogenic bacterium, was able to utilize formate or hydrogen as electron donor for the production of NADPH from NADP+ under suitable conditions. In the presence of 0.2% Triton X-100 and 0.3 m potassium phosphate, pH 9.0 at 30°C, the resting cells could convert ca. 60% of the exogenous NADP+ into NADPH yielding ca. 6 g NADPH/liter. Phosphate ions greatly enhanced the NADPH production.  相似文献   

11.
l-asparaginase from Cladosporium sp. grown on wheat bran by SSF was purified. Enzyme appeared to be a trimer with homodimer of 37 kDa and another 47 kDa amounting to total mass of 121 kDa as estimated by SDS-PAGE and 120 kDa on gel filtration column. The optimum temperature and pH of the enzyme were 30 °C and 6.3, respectively with Vmax of 4.44 μmol/mL/min and Km of 0.1 M. Substrate specificity studies indicated that, l-asparaginase has greater affinity towards l-asparagine with substrate hydrolysis efficiency (Vmax/Km ratio) eightfold higher than that of l-glutamine. l-asparaginase activity in presence of thiols studied showed decrease in Vmax and increase in Km, indicating nonessential mode of inactivation. Among the thiols tested, β-mercaptomethanol, exerted inhibitory effect, suggesting a critical role of disulphide linkages in maintaining a suitable conformation of the enzyme. Metal ions such as Ca2+, Co2+, Cu2+, Mg2+, Na+, K+ and Zn2+ significantly affected enzyme activity whereas presence of Fe3+, Pb2+ and KI stimulated the activity. Detergents studied also enhanced l-asparaginase activity. In-vitro half-life of purified l-asparaginase in mammalian blood serum was 93.69 h. The enzyme inhibited acrylamide formation in potato chips by 96 % making it a potential candidate for food industry to reduce acrylamide content in starchy fried food commodities.  相似文献   

12.
  • 1.1. The activation energy of the membrane bound H+-pyrophosphatase is 44.9 k J·mol−1, for the detergent solubilized enzyme is 55.9 kJ·mol−1.
  • 2.2. The Arrhenius plots obtained for pyrophosphatases of Rhodospirillum rubrum show no breaks.
  • 3.3. At 70°C, the membrane-bound pyrophosphatase is more stable in the presence of either Mg2+ or Zn2+ than in their absence.
  • 4.4. At 65°C, an activator effect of Mg2+ or Zn2+ was observed. Nevertheless, at 70°C no activation was obtained.
  • 5.5. The activator effects of Mg2+ or Zn2+ were depended of their concentration.
  相似文献   

13.
14.
15.
Acetyl-CoA carboxylase was purified 300-fold from rat liver, in the absence of added citrate, by precipitation from an 18,000g supernatant in the presence of Triton X-100 at 105,000g and 20 °C, followed by chromatography on phosphocellulose. Acetyl-CoA carboxylase activity in this preparation was activated by preincubation with GTP (0.1–2.0 mm) and with citrate (20 mm). Colchicine (10?6–10?3m) inhibited enzyme activity and counteracted the effects of GTP and citrate. Sucrose density gradient centrifugation demonstrated that GTP and citrate preincubation promoted the formation of the polymeric, active enzyme, while colchicine engendered disassembly. Preincubation of the purified acetyl-CoA carboxylase at 4 °C caused inactivation and disassembly, which was countered by preincubation at 37 °C in the presence of GTP or citrate. These results suggest that GTP, like citrate, activates acetyl-CoA carboxylase by enhancing the conversion of the protomeric form of the enzyme to its more active, polymeric state.  相似文献   

16.
Genetic analyses, involving backcross and F2 matings, demonstrate that the type I hyperprolinemia of PRO/Re mice is caused by an abnormal allele at a single locus designated pro-1. Mice homozygous for this allele (pro-1 b /pro-1b) possess a deficiency in the activity of component 1 of mitochondrial proline dehydrogenase. In liver mitochondria of normal C57BL/6J mice, two proline dehydrogenase activity components are demonstrable by electrophoretic resolution of Triton X-100 solubilized extracts. In mitochondria of PRO/Re mice, the activity of component 1 is not readily detectable. Residual proline dehydrogenase activity in PRO/Re mitochondria appears, therefore, to be due in large measure to activity component 2 which is more stable to incubation at 40 C, exhibits slower electrophoretic mobility, and is less reactive to menadione. Kinetic analyses demonstrate a K m (proline) for the Triton X-100 solubilized enzyme activities of PRO/Re and C57BL/6J liver mitochondria of 0.4 M and 2.9×10?3 M, respectively. C57BL/6J enzyme activity is inhibited by high substrate concentration. The activity of component 1 was not detected in other subcellular fractions of PRO/Re liver obtained by differential centrifugation. Abnormal control of respiratory chain function in PRO/Re mitochondria appears to involve primarily proline oxidation, as indicated by the level of activity of several inner membrane enzymes.  相似文献   

17.
The activity of plant plasma membrane (PM) MgATPase (EC 3. 6. 1. 35) was studied in PM vesicles purified from spring wheat (Triticum aestivum L. cv. Drabant) roots, winter wheat (Triticum aestivum L. cv. Martonvásári-8) roots, and soybean (Glycine max L. cv. Williams) hypocotyls by aqueous polymer two-phase partitioning. MgATPase from spring wheat roots was assayed at 23°C (a) in the absence and presence of Triton X-100, (b) in the presence of either 1 mM or 3 mM MgATP2?, and in the presence of increasing concentration of sucrose from 10 mM upto 1. 2 M. Activity of MgATPase in PM vesicles from winter wheat roots was measured at 21°C at sucrose concentrations of 15 mM–1. 1 M in the presence of 3 mM MgATP2? and absence of Triton X-100 only. MgATPase activity from soybean hypocotyls was studied (a) in the absence and presence of Triton X-100, (b) both at 21 and 31°C, in the presence of 3 mM MgATP2? and varying concentrations of sucrose between 10 mM and 1. 1 M. In all cases, independently of the assay conditions and the source of PM, the MgATPase activity decreased with increasing sucrose concentration. Latency of the MgATPase activity depended only slightly on the concentration of sucrose. The Q10 value for the MgATPase activity from soybean hypocotyls (and thereby the Arrhenius activation energy of the enzymatic reaction) was independent of the sucrose concentration and of the presence of Triton X-100. At optimal assay conditions, the ATP-hydrolyzing activity of plant PM MgATPase (v) was inversely proportional to the m-th power of the viscosity of aqueous phase (η) as predicted by the modified Kramers'theory of enzymatic catalysis: v ∝ (1/η)m, where m is an empirical parameter between 0 and 1. For the activity of MgATPase in the three species studied, m varied between 0. 5 and 1. 1 in good agreement with the theory. We thus conclude that (a) the activity of integral membrane enzyme-proteins may be controlled not only by the property(ies) of the membrane lipid phase but also by the viscosity of the aqueous phase in the vicinity of such enzymes, and (b) the determination of vesicle sidedness based on enzyme latency may need a minor revision. Our interpretation is in agreement with the molecular dynamics approach of enzymatic catalysis worked out for soluble enzymes.  相似文献   

18.
The thylakoid polypeptides of the cyanobacterium Anacystis nidulans R2 were analyzed by Triton X-114 phase fractionation [C. Bordier (1981) J. Biol. Chem.256, 1604–1607, as adapted for photosynthetic membranes by T. M. Bricker and L. A. Sherman (1982) FEBS Lett.149, 197–202]. In this procedure, polypeptides with extensive hydrophobic regions (i.e., intrinsic proteins) form mixed micelles with Triton X-114, and are separated from extrinsic proteins by temperature-mediated precipitation of the mixed Triton X-114-intrinsic protein micelles. The polypeptide pattern after phase fractionation was highly complementary, with 62 of the observed 110 polypeptide components partitioning into the Triton X-114-enriched fraction. Identified polypeptides fractionating into the Triton X-114 phase included the apoproteins for Photosystems I and II, cytochromes f and b6, and the herbicide-binding protein. Identified polypeptides fractioning into the Triton X-114-depleted (aqueous) phase included the large and small subunits of RuBp carboxylase, cytochromes c550 and c554, and ferredoxin. Enzymatic radioiodination of the photosynthetic membranes followed by Triton X-114 phase fractionation allowed direct identification of intrinsic polypeptide components which possess surface-exposed regions susceptible to radioiodination. The most prominent of these polypeptides was a 34-kDa component which was associated with photosystem II. This phase partitioning procedure has been particularly helpful in the clarification of the identity of the membrane-associated cytochromes, and of photosystem II components. When coupled with surface-probing techniques, this procedure is very useful in identifying intrinsic proteins which possess surface-exposed domains. Phase fractionation, in conjunction with the isolation of specific membrane components and complexes, has allowed the identification of many of the important intrinsic thylakoid membrane proteins of A. nidulans R2.  相似文献   

19.
Interrelationships between the catalytic properties of glucose-6-phosphatase and the membrane structure of rat liver microsomes were investigated. (1) Membrane modification and solubilization employing the nonionic surfactant Triton X-114 were standardized and analysed by ultracentrifugation, surface tension- and turbidity measurements. (2) The effect of Triton X-114 on the glucose-6-phosphatase activity was studied systematically and the whole magnitude of time- and temperature-dependent inactivation of this enzyme has been demonstrated. The results show that the activity measured is always a resultant of two processes, the beginning of inactivation and the release of latency. Maximal activation of about 600% (83% of apparent latency) was obtained at 0°C. (3) A correlation between membrane modification and solubilization and the conditions under preincubation and test incubation reveals that studies on detergent-disrupted microsomes are performed on structures reassembled from solubilizates and this implies a modified microenvironment in the reconstitutes. (4) Kinetic analyses suggest interrelationships between Triton X-114 and the permeability barrier of the glucose-6-phosphatase system. (5) At 0°C 2-propanol and ethanol are more potent tools for membrane modification than Triton X-114 and release 88% and 86% latent activity corresponding to an activation of the glucose-6-phosphatase of about 850% and 700%, respectively. These observations suggest that detergent treatment of microsomes could not preserve the functional integrity of the glucose-6-phosphate phosphohydrolase, which is one dogma of the substrate-transport hypothesis developed by Arion and his co-workers (Arion, W.J., et al. (1975) Mol. Cell. Biochem. 6, 75–83).  相似文献   

20.
The lac y gene of Escherichia coli which encodes the lac carrier protein has been modified by oligonucleotide-directed, site-specific mutagenesis such that cys148 is converted to a glycine residue. Cells bearing the mutated lac y gene exhibit initial rates of lactose transport that are about 4-fold lower than cells bearing the wild type gene on a recombinant plasmid. Furthermore, transport activity is less sensitive to inactivation by N-ethylmaleimide, and strikingly, galactosyl 1-thio-β-D-galactopyranoside affords no protection against inactivation. The findings suggest that although cys148 is essential for substrate protection against sulfhydryl inactivation, it is not obligatory for lactose:proton symport and that another sulfhydryl group elsewhere within the lac carrier protein may be required for full activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号