首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an increased synthesis of proteins in the molecular weight region of 100,000 72,000-74,000 and 37,000 two hours after treatment of HeLa cells for 10 min at 45 degrees C. In vitro translation, using a rabbit reticulocyte cell-free protein synthesising system, of HeLa cell cytoplasmic RNA shows that the prominent 72,000-74,000 Mr heat shock protein band comprises seven polypeptide species (namely alpha d beta gamma delta epsilon zeta) and these polypeptides are directly encoded by both polyadenylated and nonpolyadenylated mRNA.  相似文献   

2.
In poliovirus-infected HeLa cells, the mechanism of protein synthesis initiation factor recognition of m7G cap groups on mRNA is impaired. Translation of capped host cell mRNAs is inhibited, whereas translation of uncapped poliovirus mRNA proceeds exclusively. The site of this defect has been localized to the cap-binding protein complex (CBPC). To elucidate the specific structural and functional defects of the CBPC following poliovirus infection, the CBPC and/or its polypeptide components were purified from uninfected and poliovirus-infected HeLa cells. The CBPC from uninfected cells consisted of tightly associated 24- and 220-kDa polypeptides; minor amounts of polypeptides of 40, 44, and 80 kDa also consistently co-purified with the p24/p220 cores. No evidence of a 50-kDa, eIF-4A-related polypeptide subunit of the CBPC was obtained. The CBPC from poliovirus-infected cells had undergone major structural alterations. The 220-kDa component was absent; antigenically related (100-130 kDa) degradation products were present instead. The 24-kDa component co-purified with the p220 degradation products, but other components were missing. The association of the infected cell CBPC components was quite labile compared with that demonstrated by the components of CBPC from uninfected cells. Differential stimulation of capped, but not uncapped mRNAs in a cell-free translation assay was demonstrated by unmodified CBPC. Conversely, modified CBPC from poliovirus-infected cells differentially stimulated in vitro translation of uncapped poliovirus mRNA but not capped mRNAs. The implications of these results for the mechanism of cap-independent translation are briefly discussed.  相似文献   

3.
When uninfected or adenovirus 5-infected KB cells are exposed to hypertonic medium, the incorporation of radioactive amino acids into protein decreases in both, but more severely in the uninfected cells. Although the effect of hypertonic medium on the synthesis of specific polypeptides varies, the translation of viral polypeptides as a class is less inhibited. The same patterns of proteins are synthesized regardless of the solute used in the hypertonic medium. The mechanism by which hypertonic conditions exert their effect on whole cells was investigated in K cell-free systems. It was possible to simulate the differential patterns of protein synthesis obtained in whole cells in hypertonic medium by increasing ion concentrations in cell-free extracts which are capable of initiating polypeptide chains on exogenous templates. However, in cell lysates which only elongate proteins, the same patterns were not obtained. Certain host and viral polypeptides displayed striking responses to increased ionic conditions in whole cells and cell-free systems. The synthesis of a host 44K protein, actin, appeared to be most sensitive; lower-molecular-weight proteins were fairly resistant. Among the viral proteins, the synthesis of 100K was inhibited, but most notable was the marked resistance of the synthesis of polypeptide IX. Possible mechanisms for differential synthesis and their significance are considered.  相似文献   

4.
Following poliovirus infection of HeLa cells, the synthesis of cellular proteins is inhibited but translation of poliovirus mRNA proceeds. The defect in the recognition of host cell mRNA may be due to a change in a cap recognition complex which, when added to an infected cell lysate, restores the ability to translate capped mRNAs. We employed immunoblotting techniques to examine initiation factors in crude lysates from uninfected and poliovirus-infected HeLa cells. Using an antiserum against eucaryotic initiation factor 3, we detected an antigen of approximate molecular weight 220,000 in uninfected cell lysates but not in infected cell lysates. Antigenically related polypeptides of 100,000 to 130,000 daltons, presumably degradation products, were detected in the infected cell lysate. The time course for degradation of the 220,000-dalton polypeptide correlates with that for inhibition of cellular protein synthesis in vivo. A portion of the population of 220,000-dalton polypeptides apparently associates with initiation factor eIF3 but is readily dissociated in buffers containing high salt. Affinity-purified antibodies against the polypeptide recognize a protein of the same size in a purified preparation of a cap binding protein complex obtained by cap-affinity chromatography. We postulate that the 220,000-dalton polypeptide is an essential component of the cap recognition complex and that its degradation in poliovirus-infected cells results in the inhibition of host cell translation. These results are in the first demonstration of a specific structural defect in an initiation factor resulting from poliovirus infection.  相似文献   

5.
Translation of encephalomyocarditis virus RNA in a cell-free system from uninfected Krebs ascites cells results in the synthesis of a major polypeptide product with a molecular weight of approximately 112,000. In contrast, when the viral RNA is translated in a cell-free system from virus-infected cells, this polypeptide is absent and the largest polypeptide produced has a molecular weight of about 100,000. This latter polypeptide comigrates on sodium dodecyl sulfate-gels with in vivo virus capsid precursor A, and the two have identical patterns of CNBr-generated peptides. A polypeptide having a molecular weight of 12,500 is also a major translation product in the system from infected cells (but not from uninfected cells). This polypeptide appears to be generated by cleavage of the NH-2-terminal portion of the viral RNA-dependent polypeptides by a proteolytic activity present in the infected cell-free system. This proteolytic activity copurifies with the 23,000-molecular weight viral capsid protein gamma, found in infected cells, through chromatography on DEAE-cellulose and cellulose phosphate. This suggests that gamma is itself a proteolytic enzyme involved in maturation of the viral capsid precursor.  相似文献   

6.
When primary cultures of chicken myoblasts were subjected to incubation at a temperature higher than their normal growing temperature of 36-37 degrees C, the pattern of protein synthesis was altered. This condition of heat shock induced a vigorous production of a number of proteins collectively known as 'heat-shock proteins'. The synthesis of heat-shock proteins was achieved without a significant decrease in the production of a broad spectrum of proteins by muscle cells. The synthesis of three major heat-shock polypeptides with Mr values of 81 000, 65 000 and 25 000 was observed in both mononucleated dividing myoblast cells and terminally differentiated myotubes. Two-dimensional electrophoretic separation of the heat-induced polypeptides synthesized by myogenetic cultures further established that same set of polypeptides with Mr of 65 000 (pI 6.0 and 5.5), 81 000 (pI 6.2) and 25 000 (pI 5.6 and 5.3) were produced in myoblasts and myotubes. The effect of the changes in pattern of protein synthesis on the mRNA and protein moieties of non-polysomal cytoplasmic mRNA-protein complexes (free mRNP) was examined. Free mRNP complexes sedimenting at 20-35 S were isolated from the post-ribosomal supernatant of both normal and heat-shocked myotube cultures by centrifugation in a sucrose gradient. A 10-20S RNA fraction isolated from these complexes stimulated protein synthesis in a cell-free system. The RNA fraction obtained from heat-shocked cells appeared to direct the synthesis of all three major heat-shock proteins. In contrast, synthesis of these polypeptides was not detected when RNA from free mRNP complexes of normal cells was used for translation. The free mRNP complexes of both normal and heat-shocked cells showed a buoyant density of 1.195 g/cm3 in metrizamide gradients. A large number of polypeptides of Mr = 35 000-105 000 were present in the highly purified free mRNP complexes isolated from the metrizamide gradient. Similar sets of polypeptides were found in these complexes from both normal and heat-shocked myotube culture. However, the relative proportion of a 65 000-Mr polypeptide was dramatically increased in the free mRNP complexes of heat-shocked cells. Two-dimensional gel electrophoretic analysis revealed that this polypeptide and the 65 000-Mr heat-shock polypeptide exhibit similar electrophoretic migration properties. These observations suggest that, following heat-shock treatment of chicken myotube cultures, the changes in the pattern of protein synthesis is accompanied by alteration of the mRNA and protein composition of free mRNP complexes.  相似文献   

7.
Encephalomyocarditis (EMC) virus ribonucleic acid (RNA) stimulated the incorporation of (14)C-amino acids into polypeptides in cell-free systems using preincubated S10 extracts from L cells. Incorporation was linear for over 2 hr. Analysis of the tryptic peptides derived from the polypeptide products formed in response to EMC RNA showed them to be virus specific. The major product, a polypeptide of 140,000 in molecular weight, migrated on sodium dodecyl sulfate-polyacrylamide gels with one of the virus-specific polypeptides present in EMC-infected cells. A minor component of molecular weight about 230,000 may correspond to the product of complete translation of the EMC virus genome. Little or no effect of interferon or vaccinia virus infection was observed in the preincubated, cell-free system. The EMC RNA-stimulated incorporation of (14)C-amino acids into polypeptides was not inhibited in extracts derived from L cells early in virus infection, from interferon-treated cells, or from cells subjected to both treatments. Interferon treatment did appear to have a slight inhibitory effect on chain elongation in this system. However, treatment of cells with highly purified interferon before virus infection caused a decrease of about 80% in the capacity of non-preincubated cell extracts to translate added EMC RNA. This effect did not extend to the translation of polyuridylic acid and could be reversed by preincubation of the extracts at 37 C for 20 min. The inhibition of translation was manifest at interferon concentrations as low as 5IU/ml, and in this respect closely paralleled the inhibition of virus growth. Inactivation of the antiviral activity of the interferon by heating or digestion with trypsin also abolished the effect on cell-free protein synthesis. The EMC-specific polypeptides formed in reduced amounts in extracts of interferon-treated vaccinia-infected cells were smaller than those formed in extracts of untreated, vaccinia-infected cells. Thus, inhibition of initiation or elongation of polypeptides, or both, can be demonstrated in cell-free systems employing non-preincubated extracts from interferon-treated, virus-infected cells. These results indicate that antiviral activity of interferon is directed against the translation of viral messenger RNA.  相似文献   

8.
Subjecting a HeLa cell suspension culture to an increase in incubation temperature (from 37 degrees to 42 degrees C) results in the rapid cessation of polypeptide chain synthesis followed by a gradual increase in the synthesis of a class of polypeptides referred to as the heat-shock proteins. It has been proposed that the initial, rapid shutoff of protein synthesis (less than 20 min) is due to the phosphorylation of initiation factor eIF-2 in its alpha subunit, a modification known to result in the inhibition of polypeptide synthesis. Using an in vitro translation system derived from heat-shocked HeLa cells grown in suspension culture, we were unable to find any evidence implicating eIF-2 alpha phosphorylation in the initial shutoff of translation during the heat shock response. These results suggest that the rapid inhibition of protein synthesis observed under heat shock conditions is mediated by a mechanism(s) other than eIF-2 alpha phosphorylation.  相似文献   

9.
Polypeptide synthesis has been studied in cell-free systems prepared from vaccinia virus-infected and uninfected HeLa cells. Cytoplasmic extracts containing endogenous messenger ribonucleic acid were used. Amino acid incorporation into hot trichloroacetic acid-precipitable material was linear for 15 to 20 min at 37 C. The initial rate of protein synthesis was approximately 15% of the rate in intact cells. Optimal conditions for polypeptide synthesis were similar in cell-free systems prepared from infected or uninfected cells. Requirements for an energy source and Mg(++) were demonstrated. The optimal Mg(++) concentration was 4 to 5 mm. Ribonuclease, puromycin, and cycloheximide were inhibitory. The molecular weights of the polypeptides labeled in the cell-free systems, as determined by gel filtration in 5 m guanidine hydrochloride, ranged from 16,000 to above 68,000. Polyacrylamide gel electrophoresis indicated that the polypeptides labeled in cell-free extracts of uninfected and infected cells were different. The latter closely corresponded in electrophoretic mobility with the viral polypeptides made in intact, infected cells.  相似文献   

10.
In vitro translation with adenovirus polyribosomes.   总被引:3,自引:2,他引:1       下载免费PDF全文
Polyribosomes isolated from adenovirus type 2 (Ad2)-infected HeLa cells late in productive infection can be used for translation in cell-free systems. At least eight viral polypeptides are synthesized, including the precursors to virion polypeptides VI and VII. Separation of polyribosomes by zonal rate centrifugation followed by translation in a cell-free system reveals a correlation between the sizes of the polyribosomes and the polypeptides synthesized. The cell-free extracts incorporate amino acid linearly for only 10 min and show little or no capacity to reinitiate protein synthesis. The elongation efficiency measured as the number of amino acids incorporated per ribosome in 20 min is low, ranging from 10 to 100. The maximum chain elongation rate is estimated to be 10 to 20 amino acids per min. The limited elongation has been used to assess the relative concentration of mRNA's engaged in translation.  相似文献   

11.
Pigment-binding protein of the facultatively phototrophic bacterium Rhodospeudomonas capsulata could be selectively synthesized in toluene-treated cells as well as in homologous and heterologous cell-free translation systems by isolated polysomes. It is shown that the pigment-binding polypeptides of the light-harvesting complexes are encoded by messenger RNA of extreme longevity. The dependence of their synthesis on the concomitant synthesis of tetrapyrroles was demonstrated in the toluene-treated cells. The large Mr-28 000 polypeptide of the reaction center and the Mr-10 000 pigment-binding polypeptide of the light-harvesting complex II were found to be synthesized by free (water-soluble) polysomes without a cleavable 'leader' or 'signal' peptide [reviewed by W. Wickner (1979) Annu. Rev. Biochem. 48, 23-45]. The Mr-10 000 polypeptide, as synthesized in vitro, was studied in more detail. Unlike the membrane-assembled polypeptide in vivo it was insoluble in an organic solvent mixture (chloroform/methanol 1:1, v/v). After detergent denaturation in the presence of membrane isolated from the organism it became organic-solvent-soluble. Obviously the polypeptide could be induced to assume alternative conformations in which its apolar residues were either exposed to the solvent or buried within. These findings, in agreement with Wickner's hypothesis, indicate that the Mr-10 000 polypeptide may enter the lipid bilayer by a 'membrane-triggered' conformational change.  相似文献   

12.
13.
An 80 000-Mr polypeptide, which bound to anti-legumin IgG, was detected among labelled polypeptides from cotyledons at late stages of development. When poly(A)-containing RNA from similar cotyledons was translated in a cell-free protein-synthesizing system, an 80 000-Mr polypeptide was also detected. Immunoprecipitation of translation products with anti-legumin IgG showed that, in addition to the major legumin precursor polypeptides of Mr approximately 60 000, the 80 000-Mr polypeptide was specifically immunoprecipitated. A cDNA clone, pCD32, was found to select an RNA coding for an 80 000-Mr polypeptide in hybrid-selection experiments. Additional minor polypeptides of Mr 63 000 and 65 000 were present in translation products of RNA selected by pCD32; all three polypeptides were immunoprecipitated by anti-legumin IgG. Thermal elution of RNAs bound to pCD32 showed that the affinity of pCD32 to the RNA coding for the 80 000-Mr polypeptide was greater than to the RNAs coding for the 63 000-Mr and 65 000-Mr polypeptides. In similar hybrid-selection experiments, another cDNA clone, pCD40, selected RNAs coding predominantly for polypeptides of Mr 63 000 and 65 000. A minor polypeptide of Mr 80 000 was also detected among these products; again all three polypeptides were immunoprecipitated by anti-legumin IgG. Peptide mapping revealed close similarities between the 80000-Mr polypeptide and the 63 000-Mr/65 000-Mr polypeptides obtained by translation of RNAs selected by pCD32. There were similarities also between maps obtained from translation products of RNA selected by pCD32 and those obtained from anti-legumin IgG immunoprecipitates of total translation products of poly(A)-containing RNA.  相似文献   

14.
Protein Synthesis in Cell-Free Systems: an Effect of Interferon   总被引:6,自引:4,他引:2       下载免费PDF全文
The activity of ribosome and cell-sap fractions from interferon-treated and control chick embryo fibroblasts was compared in mixed chick-mouse and purely chick cell-free systems capable of the synthesis of viral polypeptide(s) in response to viral ribonucleic acid (RNA). Interferon treatment of cells did not affect the intrinsic amino acid incorporation activity of these systems or their response to polyuridylic acid. With encephalomyocarditis (EMC) virus RNA as messenger, however, a fraction of the ribosomes from interferon-treated cells appeared less active than parallel controls. The results obtained with the corresponding cell-sap fractions were variable. Although competition between endogenous and added messengers cannot be excluded in these systems, a reduced level of translation of EMC RNA with interferon-treated cell ribosomes was also suggested by the results of analyses of tryptic digests of the products formed in response to the RNA. In addition, these analyses showed that this reduced activity must reflect a reduction in the rate or frequency of translation rather than a decrease in the length of the EMC RNA translated, for the same polypeptides were synthesized in response to the RNA with material from interferon-treated and control cells. Interferon added directly to the cell-free system was without effect. Although suggestive, these results do not provide definitive evidence for or against the hypothesis that virus protein synthesis is inhibited at the translational level in the interferon-treated cell. Possible alternative interpretations of the data are discussed.  相似文献   

15.
Insulin modulation of apolipoprotein B gene expression was studied at the translational level by the use of a cell-free translation system from a hepatoma cell-line, HepG2. Extracts of HepG2 cells lysed with lysolecithin were found to have high in vitro protein synthesizing activity utilizing endogenous mRNA. The level of peptide chain initiation was high, as suggested by a significant inhibition of translation by edeine. The translation products of endogenous mRNA in HepG2 cell-free lysate were probed with anti-apolipoprotein B antibodies to investigate its synthesis. A 550 kilodalton (kDa) polypeptide was selected by a polyclonal antibody, as well as a monoclonal antibody, against the C-terminal end of apolipoprotein B molecule. This in vitro synthesized polypeptide was also found to compare well in size with the in vivo product. The HepG2 lysate was also shown to efficiently synthesize in vitro a number of other proteins including albumin, apolipoprotein E, apolipoprotein A1, and actin. The in vitro synthesis of polypeptides as large as 500 kDa was unexpected and has not previously been demonstrated in a cell-free system. The HepG2 translation system was used to investigate the effect of insulin on the in vitro translation of apolipoprotein B. Lysates prepared from HepG2 cells treated with insulin were found to have lower translational activity (by an average of 52.3%) for apolipoprotein B compared with lysates from control untreated cells. In vitro synthesis of actin and apolipoprotein E were unaffected under these conditions. The insulin-stimulated decline in in vitro apolipoprotein B synthesis was not due to a change in apolipoprotein B mRNA levels as determined by slot- and Northern-blot analyses, suggesting that the inhibitory effect of insulin may be exerted partly at the level of apolipoprotein B mRNA translation.  相似文献   

16.
The addition of 5 mM cAMP to a cell-free translation system from rabbit reticulocytes increases the rate of protein synthesis 3 5-fold. Lower concentrations of cAMP (0.005, 0.05 and 0.5 mM) have no effect on translation in this system. cAMP at all the concentrations tested stimulates the phosphorylation of the same pattern of polypeptides, while 5 mM cAMP additionally stimulates dephosphorylation of the 95 kDa polypeptide identified as elongation factor 2 (EF-2). Testing of the preparations of EF-2 with a different content of the phosphorylated form in poly(U)-directed poly(Phe) synthesis reveals that the EF-2 activity correlates with the fraction of non-phosphorylated EF-2. Thus cAMP-dependent activation of protein synthesis seems to be due to dephosphorylation of EF-2.  相似文献   

17.
Proteins encoded by adenovirus type 2 and type 5 early region 2A isolated from infected HeLa cells were compared to translation products of E2A-specific messenger RNA in a reticulocyte cell-free system and in Xenopus oocytes. The main cell-free translation product is a 72,000 Mr polypeptide which in HeLa cells as well as in Xenopus oocytes is converted into a 75,000 Mr phosphoprotein capable of binding to single-stranded DNA. Some minor proteins are proteolytic cleavage products of the major protein. In the cell-free system, three E2A polypeptides, 32,000, 37,000 and 44,000 Mr, are translated from minor polyadenylated mRNA species that can be separated from the major mRNA. Synthesis of all E2A polypeptides in vitro is inhibited by cap-analogs. The 44,000 Mr protein is also synthesized in Xenopus oocytes. Tryptic peptide maps of [35S]methionine-labeled E2A proteins were constructed using high pressure liquid chromatography and the position of the methionyl residues within each peptide was determined by amino acid sequencing procedures. This information and the DNA sequence of the adenovirus 5 E2A gene published by Kruijer et al. (1981) were used to align the peptides and to construct a map of the E2A proteins. Our data demonstrate that the major 75,000 Mr protein is coded for by a leftward reading frame of 529 amino acid residues located between 62 and 66 map units. The data also map six sites as targets for proteolytic enzymes. The minor E2A translation products have the same carboxy terminus as the major protein. The initiation codons of the 44,000, 37,000 and 32,000 Mr polypeptides probably correspond to amino acids 170, 243 or 244 and 290 of the major protein. Some functional properties of the major E2A protein are shared by the minor proteins and thus could be mapped. Major sites of phosphorylation, the region involved in binding to single-stranded DNA and the antigenic regions recognized by immune sera are located between amino acid residues 50 to 120, 170 to 470 and 170 to 240, respectively.  相似文献   

18.
The translation of encephalomyocarditis virus (EMC) RNA is markedly inhibited in cell-free systems from interferon-treated, vaccinia virus-infected L-cells (10, 11). The polypeptide products synthesized in response to EMC RNA in cell-free systems from these and untreated infected cells have been analyzed by electrophoresis on polyacrylamide gels. Qualitatively, the same EMC-specific polypeptides were synthesized throughout. In experiments using preincubated microsomes from normal Krebs cells to assay cell sap from L-cells which had been exposed to interferon prior to infection, only the amount of the EMC-specific polypeptide products was reduced. This result suggests that there is an inhibition very early in translation in interferon-treated, infected cells. Initiation seems a priori the more attractive site for this inhibition, but an effect shortly after initiation cannot be excluded. With unfractionated cell-free systems from interferon-treated infected L-cells, however, there appeared to be an additional minor inhibitory effect on polypeptide chain elongation, in that the EMC-specific polypeptides synthesized showed not only a reduction in amount but also a bias towards lower molecular weight. The formylated methionyl initiator tRNA (Fmet-tRNAF) was used as a further probe into the apparent effect on intiation. With this reagent we have confirmed that there is one major initiation site for the translation of EMC RNA in these cell-free systems. In addition, the results have shown that EMC-specific polypeptide chains initiated with Fmet escape the major interferon-mediated inhibition at or shortly after initiation.  相似文献   

19.
Virus-specific RNA was prepared from cells early after adenovirus type 2 infection and fractionated by hybridization to specific fragments of viral DNA. The viral mRNA was used to program cell-free protein synthesis, and the products were analyzed by electrophoresis. The genes for the early polypeptides of apparent molecular weight 44,000, 15,000, 72,000, 15,500, 19,000, and 11,000 daltons were located, respectively, between positions 0–4.1, 4.1–16.7, 58.5–70.7, 75.9–83.4, 89.7–98.6, and 89.7–98.6 of the conventional adenovirus DNA map. The polypeptide of molecular weight 72,000 daltons was shown to be the single-strand DNA-binding protein described by others. RNAs from three different adeno-transformed cell lines each program the synthesis in vitro of predominantly the 15K polypeptide, as well as variable amounts of the polypeptide of molecular weight 44,000 daltons. The genes for these two polypeptides are located in the portion of DNA known to be required for transformation of rodent cells by adenovirus.  相似文献   

20.
《Biochimie》1987,69(8):797-802
Baciphelacin an antibiotic produced by Bacillus thiaminolyticus was a potent inhibitor of protein synthesis in HeLa cells and other mammalian cell lines. It had no effect on DNA or RNA synthesis. Concentrations of baciphelacin around 10−7 M inhibited protein synthesis by 50% in intact cells. The antibiotic had no effect on protein synthesis in Saccharomyces cerevisiae or Escherichia coli, but inhibited the protozoan Trypanosoma brucei. In vitro protein synthesis in a rabbit reticulocyte cell-free system was blocked by baciphelacin. However, translation of globin mRNA in a wheat cell-free system was not affected by this antibiotic. Baciphelacin had no activity against a number of cell-free systems used to measure different steps of translation, including binding of substrates to the ribosome, peptide bond formation and polyphenylalanine synthesis. Therefore, it is assumed that it affects the initiation of translation or the charging of tRNA. Finally, the inhibition of protein synthesis by compounds structurally related to baciphelacin was tested and their effects compared to baciphelacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号