首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Preparations of human erythrocyte membranes have been made which are in the form of sealed vesicles and which behave as osmometers on suspension in solutions of simple inorganic salts. Using these preparations the permeability of the membranes to Na+, K+, Mg2+ and Ca2+ was measured. Cyclic AMP (but not cyclic GMP) increased the permeability of the membranes to Ca2+ with a half maximal effect at a concentration of 25µm but did not affect the permeability to the other ions tested. Phosphorylation of proteins in the erthrocyte membrane lowered the permeability to Ca2+ without affecting the permeability to the other ions tested and there was a good correlation between the time course of protein phosphorylation and decrease in Ca2+ permeability.It is postulated that the system through which cyclic AMP causes an initial rapid rise in Ca2+ permeability followed by increased phosphorylation of membrane proteins and reduced Ca2+ permeability may have a widespread occurrence in biological systems and serve to control the concentration of Ca2+ in the cytoplasm.  相似文献   

2.
Chronic morphine treatment of rats decreased the level of phosphorylation of synaptic membrane proteins of the striatum assayed in vitro. Although the patterns of phosphorylated proteins separated on SDS-gel electrophoresis from morphine-tolerant rats resembled patterns produced by lowering Ca2+ levels in the assay, supplementation of the protein kinase assay with Ca2+ and its binding protein, calmodulin, did not restore full kinase activity. The addition of methadone or etorphine to the protein kinase in vitro however, was able to block the Ca2+-calmodulin stimulation of phosphorylation in both synaptic membranes and intact synaptosomes. These data suggest that opioids produce an irreversible (or slowly reversible) defect in the Ca2+-dependent protein kinase system of striatal membranes.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   

3.
Summary Preparations of avian erythrocyte plasma membranes have been made which are in the form of sealed vesicles. Using these preparations the permeability of the membranes to Na+ K+, Mg+ and Ca+ was measured. Monobutyryl cyclic AMP and cyclic AMP increased the permeability to Na+ and Ca+ under conditions where no protein phosphorylation could occur. The only effect of phosphorylation of membrane proteins was to reduce Ca+ permeability. It is thus concluded that cyclic AMP increases Na+ permeability in the avian erythrocyte by a direct effect which does not involve protein phosphorylation.  相似文献   

4.
Summary In rabbit ileum, Ca2+/calmodulin (CaM) appears to be involved in physiologically inhibiting the linked NaCl absorptive process, since inhibitors of Ca2+/CaM stimulate linked Na+ and Cl absorption. The role of Ca2+/CaM-dependent phosphorylation in regulation of the brush-border Na+/H+ antiporter, which is believed to be part of the neutral linked NaCl absorptive process, was studied using purified brush-border membrane vesicles, which contain both the Na+/H+ antiporter and Ca2+/CaM-dependent protein kinase(s) and its phosphoprotein substrates. Rabbit ileal villus cell brush-border membrane vesicles were prepared by Mg precipitation and depleted of ATP. Using a freezethaw technique, the ATP-depleted vesicles were loaded with Ca2+, CaM, ATP and an ATP-regenerating system consisting of creatine kinase and creatine phosphate. The combination of Ca2+/CaM and ATP inhibited Na+/H+ exchange by 45±13%. This effect was specific since Ca2+/CaM and ATP did not alter diffusive Na+ uptake, Na+-dependent glucose entry, or Na+ or glucose equilibrium volumes. The inhibition of the Na+/H+ exchanger by Ca2+/CaM/ATP was due to an effect on theV max and not on theK m for Na+. In the presence of CaM and ATP, Ca2+ caused a concentration-dependent inhibition of Na+ uptake, with an effect 50% of maximum occurring at 120nm. This Ca2+ concentration dependence was similar to the Ca2+ concentration dependence of Ca2+/CaM-dependent phosphorylation of specific proteins in the vesicles. The Ca2+/CaM/ATP-inhibition of Na+/H+ exchange was reversed by W13, a Ca2+/CaM antagonist, but not by a hydrophobic control, W12, or by H-7, a protein kinase C antagonist. we conclude that Ca2+, acting through CaM, regulates ileal brush-border Na+/H+ exchange, and that this may be involved in the regulation of neutral linked NaCl absorption.  相似文献   

5.
25-Hydroxycholesterol and 25-hydroxy vitamin D-3 increased the permeability of liposomes to Ca2+ measured by the arsenazo III encapsulation technique. This effect was sensitive to the lipid composition of the membrane, with changes that decreased the motional freedom of phospholipid acyl chains decreasing Ca2+ permeability. The greatest permeability was observed with the zwitter-ionic phospholipids, phosphatidylcholine and phosphatidylethanolamine, whereas the acidic phospholipids, phosphatidylinositol and phosphatidylserine, depressed Ca2+ permeability. The effect was not specific for Ca2+. Other divalent cations were translocated in the order Mn2+ > Mg2+  Ca2+ ? Sr2+  Ba2+. The permeability of liposomes to the monovalent cation, Na+, was also substantially increased. The effect did not appear to be due to ionophoretic properties of the sterols, and it is suggested that perturbation of the membranes by the polar 25-hydroxyl group may play a role in increasing membrane permeability.  相似文献   

6.
Summary The influence of Ca2+ and other cations on electrolyte permeability has been studied in isolated membrane vesicles from cat pancreas.Ca2+ in the micromolar to millimolar concentration range, as well as Mg2+, Sr2+, Mn2+ and La3+ at a tested concentration of 10–4 m, increased Na+ permeability when applied at the vesicle inside. When added to the vesicle outside, however, they decreased Na+ permeability. Ba2+ was effective from the outside but not from the vesicle inside.When Ca2+ was present at both sides of the membrane, Na+ efflux was not affected as compared to that in the absence of Ca2+. Monovalent cations such as Rb+, Cs+, K+, Tris+ and choline+ decreased Na+ permeability when present at the vesicle outside at a concentration range of 10 to 100mm. Increasing Na+ concentrations from 10 to 100mm at the vesicle inside increased Na+ permeability.The temperature dependence of Na+ efflux revealed that the activation energy increased in the lower temperature range (0 to 10°C) when Ca2+ was present at the outside or at both sides, but not when present at the vesicle inside only or in the absence of Ca2+.The results suggest that the Ca2+ outside effect is due to binding of calcium to negatively charged phospholipids with a consequent reduction of both fluidity and Na+ permeability of the membrane. The Ca2+-inside effect most likely involves interaction with proteins with consequent increase in Na+ permeability.The data are consistent with current hypotheses on secretagogue-induced fluid secretion in acinar cells of the pancreas according to which secretagogues elicit NaCl and fluid secretion by liberating Ca2+ from cellular membranes and by stimulating Ca2+ influx into the cell. The increased intracellular Ca2+ concentration in turn increases the contraluminal Na+ permeability which leads to NaCl influx. The luminal sodium pump finally transports Na+ ions into the lumen.  相似文献   

7.
Summary The regulation of cellular volume upon exposure to hypoosmotic stress is accomplished by specific plasma membrane permeability changes that allow the efflux of certain intracellular solutes (osmolytes). The mechanism of this membrane permeability regulation is not understood; however, previous data implicate Ca2+ as an important component in the response. The regulation of protein phosphorylation is a pervasive aspect of celllular physiology that is often Ca2+ dependent. Therefore, we tested for osmotically induced protein phosphorylation as a possible mechanism by which Ca2+ may mediate osmotically dependent osmolyte efflux. We have found a rapid increase in32Pi incorporation into two proteins in clam blood cell ghosts after exposure of the intact cells to a hypoosmotic medium. The osmotic component of the stress, not the ionic dilution, was the stimulus for the phosphorylations. The osmotically induced phosphorylation of both proteins was significantly inhibited when Ca2+ was omitted from the medium, or by the calmodulin antagonist. chlorpromazine. These results correlate temporally with cell volume recovery and osmolyte (specifically free amino acid) efflux. The two proteins that become phosphorylated in response to hypoosmotic stress may be involved in the regulation of plasma membrane permeability to organic solutes, and thus. contribute to hypoosmotic cell volume regulation.  相似文献   

8.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

9.
Ischemia-induced ionic imbalance leads to the activation of numerous events including mitochondrial dysfunction and eventual cell death. Dysregulation of mitochondrial Ca2+ (Ca2+m) plays a critical role in cell damage under pathological conditions including traumatic brain injury and stroke. High Ca2+m levels can induce the persistent opening of the mitochondrial permeability transition pore and trigger mitochondrial membrane depolarization, Ca2+ release, cessation of oxidative phosphorylation, matrix swelling and eventually outer membrane rupture with release of cytochrome c and other apoptogenic proteins. Thus, the dysregulation of mitochondrial Ca2+ homeostasis is now recognized to play a crucial role in triggering mitochondrial dysfunction and subsequent apoptosis. Recent studies show that some secondary active transport proteins, such as Na+-dependent chloride transporter and Na+/Ca2+ exchanger, contribute to ischemia-induced dissipation of ion homeostasis including Ca2+m.  相似文献   

10.
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 ± 0.1 in the dark to 2.1 ± 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark.Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 μm from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+.To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.  相似文献   

11.
The effects of various ions on the relationship between pre- and postsynaptic potentials were studied using untreated squid giant synapses, or those injected presynaptically with tetraethylammonium ions (TEA) in the presence of 10?6 g/ml tetrodotoxin (TTX). The synaptic transfer function was, in general, augmented by increasing [Ca2+]0 or by reducing [Mg2+]0. Opposite results were found by lowering either [Na+]0 or [Ca2+]0, or by increasing [K+]0 or [Mg2+]0. When [Ca2+]0 was removed, presynaptically applied depolarizations failed to produce both “On-” and “Off-PSP's.” Electrophoretically injected Ca2+ into the presynaptic terminal reduced synaptic transmission. The minimal level of presynaptic membrane potential produced by an applied outward current pulse, which suppressed On-PSP completely, averaged 106 mV inside positive (ranging between 52–205 mV from 12 preparations). The potential level was shifted more negatively on lowering [Ca2+]0 and more positively in high [Ca2+]0-media. However, altering the [Na+]0 did not change the suppression level appreciably. Under these ionic circumstances the maximum amplitude of On-PSP, as well as Off-PSP, was markedly changed, but the level of the presynaptic depolarization required to evoke a maximum On-PSP appeared to be unchanged, and the average value was 50 mV from the resting membrane potential level. Although the data are only qualitative, they appear to support the “Ca hypothesis” for the transmitter release and its shut-off mechanism. Replacement of 423 mM Cl? by Br? or with isethionate did not affect synaptic transmission.  相似文献   

12.
We studied on apple snail neurons the connection between K+ and Na+ concentration gradients, transmembrane difference of potentials, and concentrations of Ca2+ in the external medium. Sensitivity of the resting potential (RP) of neurons to the influence of temperature and to metabolic poisons rose considerably with a decrease of Ca2+ concentration in the solution surrounding a ganglion. An excess of Ca2+ in the external medium did not affect the RP or ion concentration in nerve cells. Removal of Na2+ from this solution causes hyperpolarization of the membrane which disappears when active transport of sodium ions through the membrane is suppressed. Sodium enrichment and potassium impoverishment of the neurons are observed in potassium-free solutions at 4°C. Reaccumulation of K+ and exclusion of Na+ from the solutions of 21°C depends on the concentration of Ca2+ in the medium. The ionic composition of the neurons is not restored upon removal of Ca2+ from the solution. Upon increasing the amount of Ca2+, movement of ions against the concentration gradients is intensified. Thus, it may be concluded that Ca2+ ions on the one hand participate in the maintenance of normal passive permeability of ions through the membrane, and on the other accelerate active transport of K+ and Na+ against the concentration gradients. The mechanisms of these processes are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 323–330, November–December, 1969.  相似文献   

13.
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.  相似文献   

14.
Phosphorylation/dephosphorylation of the plasma-membrane H+-ATPase (EC 3.6.1.35) could act as a regulatory mechanism to control its activity. In this work, a plasmalemma-enriched fraction from maize roots and a partially purified H+-ATPase were used to investigate the effects of Ca2+ and calmodulin on the H+-ATPase activity and on its phosphorylation status. Both the hydrolytic and the proton-pumping activities were reduced approximately 50% by micromolar Ca2+ concentrations while calmodulin did not show any effect either alone or in the presence of Ca2+. The lack of effect of calmodulin antagonists indicated that calmodulin was not involved in this response. The addition of staurosporine, a kinase inhibitor, abolished the inhibitory effect of Ca2+. Phosphorylation of plasma membrane and partially purified H+-ATPase showed the same behavior. In the presence of Ca2+ a polypeptide of 100 kDa was phosphorylated. This polypeptide cross-reacted with antibodies raised against the H+-ATPase of maize roots. The autoradiogram of the immunodetected protein clearly showed that this polypeptide, which corresponds to the H+-ATPase, was phosphorylated. Additional clear evidence comes from the immunoprecipitation experiments: the data obtained show that the H+-ATPase activity is indeed influenced by its state of phosphorylation. Received: 19 October 1998 / Accepted: 23 February 1999  相似文献   

15.
Ischemia-induced ionic imbalance leads to the activation of numerous events including mitochondrial dysfunction and eventual cell death. Dysregulation of mitochondrial Ca2+ (Ca2+m) plays a critical role in cell damage under pathological conditions including traumatic brain injury and stroke. High Ca2+m levels can induce the persistent opening of the mitochondrial permeability transition pore and trigger mitochondrial membrane depolarization, Ca2+ release, cessation of oxidative phosphorylation, matrix swelling and eventually outer membrane rupture with release of cytochrome c and other apoptogenic proteins. Thus, the dysregulation of mitochondrial Ca2+ homeostasis is now recognized to play a crucial role in triggering mitochondrial dysfunction and subsequent apoptosis. Recent studies show that some secondary active transport proteins, such as Na+-dependent chloride transporter and Na+/Ca2+ exchanger, contribute to ischemia-induced dissipation of ion homeostasis including Ca2+m.Key words: ischemia, intracellular Ca2+ dysregulation, changes of mitochondrial Ca2+, cytochrome c, apoptosis  相似文献   

16.
The role of inorganic phosphate as inhibitor of mitochondrial membrane permeability transition was studied. It is shown that in mitochondria containing a high phosphate concentration, i.e., 68 nmol/mg, Ca2+ did not activate the pore opening. Conversely, at lower levels of matrix phosphate, i.e., 38 nmol/mg, Ca2+ was able to induce subsequent pore opening. The inhibitory effect of phosphate was apparent in sucrose-based media, but it was not achieved in KCl media. The matrix free Ca2+ concentration and matrix pH were lowered by phosphate, but they were always higher in K+-media. In the absence of ADP, phosphate strengthened the inhibitory effect of cyclosporin A on carboxyatractyloside-induced Ca2+ efflux. Acetate was unable to replace phosphate in the induction of the aforementioned effects. It is concluded that phosphate preserves selective membrane permeability by diminishing the matrix free Ca2+ concentration.  相似文献   

17.
Liposomes having membrane proteins of chicken erythrocytes were prepared and the effect of S-adenosylmethionine on 45Ca2+ uptake into the liposomes was investigated. S-Adenosylmethionine, a donor of methyl groups in enzymatic methylation, induced an increase of 45Ca2+ uptake into the proteoliposomes with membrane proteins but not into the liposomes without membrane proteins. Increased release of 45Ca2+ from the inside of the proteoliposomes was also induced by S-adenosylmethionine. These increases of uptake and release of 45Ca2+ were inhibited by S-adenosylhomocystein, an inhibitor of enzymatic methylation. Furthermore, membrane proteins from chicken erythrocytes showed protein and phospholipid methyltransferase activities. The uptake of other materials, 3-0-[methyl-3H]glucose, α-[1-14C]aminoisobutyric acid, 42K+ and 54Mn2+, into the proteoliposomes was not increased by S-adenosylmethionine. These results suggest that enzymatic methylation of membrane components may have an important role in the regulation of calcium transport in the chicken erythrocyte membrane and this regulation is rather specific for calcium.  相似文献   

18.
Transient-state kinetics of phosphorylation and dephosphorylation of the Ca2+-ATPase of sarcoplasmic reticulum vesicles from rabbit skeletal and dog cardiac muscles were studied in the presence of varying concentrations of monovalent and divalent cations. Monovalent cations affect the two types of sarcoplasmic reticulum differently. When the rabbit skeletal sarcoplasmic reticulum was Ca2+ deficient, preincubation with K+ (as compared with preincubation with choline chloride) did not affect initial phosphorylation at various concentrations of Ca2+, added with ATP to phosphorylate the enzyme. This is in contrast to preincubation with K+ of the Ca2+-deficient dog cardiac sarcoplasmic reticulum, which resulted in an increase in the phosphoenzyme level. When Ca2+ was bound to the rabbit skeletal sarcoplasmic reticulum, K+ inhibited E ~ P formation; but under the same conditions, E ~ P formation of dog cardiac sarcoplasmic reticulum was activated by K+ at 12 μM Ca2+ and inhibited at 0.33 and 1.3 μM Ca2+. Li+, Na+ and K+ also have different effects on E ~ P decomposition of skeletal and cardiac sarcoplasmic reticulum. The latter responded less to these cations than the former. Studies with ADP revealed differences between the two types of sarcoplasmic reticulum. For rabbit skeletal sarcoplasmic reticulum, 40% of the phosphoenzyme formed was ‘ADP sensitive’, and the decay of the remaining E ~ P was enhanced by K+ and ADP. Dog cardiac sarcoplasmic reticulum yielded about 40–48% ADP-sensitive E ~ P, but the decomposition rate of the remaining E ~ P was close to the rate measured in the absence of ADP. Thus, these studies showed certain qualitative differences in the transformation and decomposition of phosphoenzymes between skeletal and cardiac muscle which may have bearing on physiological differences between the two muscle types.  相似文献   

19.
Stretch of the vascular wall stimulates smooth muscle hypertrophy by activating the MAPK and Rho/Rho kinase (ROK) pathways. We investigated the role of calcium in this response. Stretch-stimulated expression of contractile and cytoskeletal proteins in mouse portal vein was inhibited at mRNA and protein levels by blockade of voltage-dependent Ca2+ entry (VDCE). In contrast, blockade of store-operated Ca2+ entry (SOCE) did not affect smooth muscle marker expression but decreased global protein synthesis. Activation of VDCE caused membrane translocation of RhoA followed by phosphorylation of its downstream effectors LIMK-2 and cofilin-2. Stretch-activated cofilin-2 phosphorylation depended on VDCE but not on SOCE. VDCE was associated with increased mRNA expression of myocardin, myocyte enhancer factor (MEF) -2A and -2D, and smooth muscle marker genes, all of which depended on ROK activity. SOCE increased ERK1/2 phosphorylation and c-Fos expression but had no effect on phosphorylation of LIMK-2 and cofilin-2 or on myocardin and MEF2 expression. Knockdown of MEF2A or -2D eliminated the VDCE-induced activation of myocardin expression and increased basal c-Jun and c-Fos mRNA levels. These results indicate that MEF2 mediates VDCE-dependent stimulation of myocardin expression via the Rho/ROK pathway. In addition, SOCE activates the expression of immediate-early genes, known to be regulated by MEF2 via Ca2+-dependent phosphorylation of histone deacetylases, but this mode of Ca2+ entry does not affect the Rho/ROK pathway. Compartmentation of Ca2+ entry pathways appears as one mechanism whereby extracellular and membrane signals influence smooth muscle phenotype regulation, with MEF2 as a focal point.  相似文献   

20.
Summary The bioenergetics of Ca2+ transport in bacteria are discussed with special emphasis on the interrelationship between transport and other cellular functions such as substrate oxidation by the respiratory chain and oxidative phosphorylation. The unusual polarity of Ca2+ movement provides an exceptional tool to compare active transport and other ATP requiring or generating processes since this ion is actively taken up by everted vesicles in which the coupling-factor ATPase is exposed to the external medium. As inferred from studies with everted vesicles, the active extrusion of Ca2+ by whole cells can be accomplished by substrate driven respiration, hydrolysis of ATP or as in the case ofStreptococcus faecalis by a nonhydrolytic unknown process which involves ATP directly. Substrate oxidation and the hydrolysis of ATP result in the generation of a pH gradient which can energize the Ca2+ uptake directly (Ca2+/H+ antiport) or via a secondary Na+ gradient (Ca2+/Na+ antiport). In contrast to exponentially growing cells sporulating Bacilli accumulate Ca2+ during the synthesis of dipicolinic acid. Studies involving Ca2+ transport provided evidence in support of the hypothesis that the Mg2+ ATPase fromEscherichia coli not only provides the driving force for various cellular functions but exerts a regulatory role by controlling the permeability of the membrane to protons. The different specificity requirements of various naphthoquinone analogs in the restoration of transport or oxidative phosphorylation, after the natural menaquinone has been destroyed by irradiation, has indicated that a protonmotive force is sufficient to drive active transport. However, in addition to the driving force (protonmotive force) necessary to establish oxidative phosphorylation, a specific spatial orientation of the respiratory components, such as the naphthoquinones, is essential for the utilization of the proton gradient or membrane potential or both. Finally evidence suggesting that intracellular Ca2+ levels might play a fundamental role in bacterial homeostasis is discussed, in particular the role of Ca2+ in the process of chemiotaxis and in conferring bacteria heat stability. A vitamin K-dependent carboxylation reaction has been found inEscherichia coli which is similar to that reported in mammalian systems which results in γ carboxylation of glutamate residues. Although all of the proteins containing γ-carboxyglutamate described so far are involved in Ca2+ metabolism, the role of these proteins inEscherichia coli is unknown and remains to be elucidated. Dr. A. F. Brodie deceased on January 24, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号