首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of Escherichia coli were incubated in broth medium in the presence of 5 mM of hydroxylamine which completely inhibited growth but did not affect viabilities. Hydroxylamine is known to inhibit phosphatidylserine decarboxylase. A large amount of phosphatidylserine (up to 20% of total phospholipids), which did not occur in normal cells, accumulated accompanied with a decrease in phosphatidylethanolamine. Higher uptake activities of serine and glutamate were observed with the hydroxylamine-treated cells than control cells. When membrane vesicles from hydroxylamine-treated cells were prepared, they also displayed higher uptake activities of serine, proline, glutamate, and threonine than those of normal membranes. When hydroxylamine-treated cells were incubated with chloramphenicol, at concentrations which almost completely inhibited protein synthesis, the composition of phosphatidylserine decreased with a concomitant increase in that of phosphatidylethanolamine. The phospholipid composition of these cells incubated for 5 h with chloramphenicol became almost normal. Membranes vesicles prepared from such cells displayed reduced uptake activities, which were close to those of normal vesicles. These results were interpreted as indicating the altered transport activities due to the altered phospholipid composition.  相似文献   

2.
The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold whereas the turnover of newly synthesized phosphatidylserine was normal. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine. These results demonstrate that exogenous phosphatidylserine can be efficiently incorporated into Chinese hamster ovary cells and utilized for membrane biogenesis, endogenous phosphatidylserine biosynthesis thereby being suppressed.  相似文献   

3.
Plasma membranes were purified from T-lymphocytes from rabbit thymus stimulated with concanavalin A. Lipids were extracted and the fatty acid composition of the individual phospholipid species was determined by gas-liquid chromatography. Compared to the plasma membranes derived from control cells, the plasma membranes from mitogen-stimulated cells were enriched in polyunsaturated fatty acids. This increase in unsaturation was found in phosphatidylcholine, phosphatidylinositol and phosphatidylserine, while the fatty acid composition of phosphatidylethanolamine was not significantly altered. The phospholipid composition remained almost unchanged during the period of stimulation. The molar ratio cholesterol to phospholipid was decreased. These changes in the lipid composition of plasma membranes from mitogen-stimulated T-lymphocytes are discussed with regard to functional implications.  相似文献   

4.
Influenza virus induces apoptosis in cultured cell lines as well as in animal tissues. HeLa cells were infected with influenza virus A/Udon/72 (H3N2) under conditions resulting in almost 100% infection. Such cells underwent typical caspase-dependent apoptosis and were efficiently phagocytosed by macrophages prepared from peritoneal fluids of thioglycolate-treated mice. The membrane phospholipid phosphatidylserine appeared on the surfaces of virus-infected cells at around the time efficient phagocytosis became detectable. In fact, the phagocytosis was almost completely inhibited in the presence of liposomes containing phosphatidylserine, which did not influence the antibody-dependent uptake of zymosan particles by the same macrophages. These results indicate that macrophages phagocytose influenza virus-infected HeLa cells in a manner mediated by phosphatidylserine that appears on the surfaces of infected cells during the process of apoptosis.  相似文献   

5.
A single-gene nuclear choline-requiring mutant of Saccharomyces cerevisiae was studied. Choline as a growth supplement to synthetic media could be substituted by low concentrations of dimethylethanolamine, monomethylethanolamine or ethanolamine. DL-Serine also supported growth, but only at high concentrations: on a molar basis it was approximately one hundred times less effective than choline. When cultured in unsupplemented medium the mutant cells soon ceased to grow. The growth-arrested cells contained less than one fifth of the phosphatidylethanolamine present in wild-type cells and only traces of phosphatidylserine. The relative content of the two phospholipid species was raised by growing the mutant cells in the presence of choline of the other supplements but still remained lower than in wild-type cells. The mutant cells depleted of phosphatidylethanolamine and phosphatidylserine had greatly diminished ability to fuse with other cells in mating and their protoplasts showed increased resistance to hypotonic lysis. Respiration was not substantially affected by the deficit of the two phospholipid species in the mutant. In cell-free preparations, the affinity of the phosphatidylserine synthesizing system for serine was found to be almost two orders of magnitude lower in the mutant than in the wild-type. The impairment of phosphatidylserine synthesis accounts for growth requirement and the abnormal phospholipid composition of the mutant cells.  相似文献   

6.
The effects of phosphatidylserine starvation on the infection with Sindbis virus (an enveloped RNA virus) have been investigated in a Chinese hamster ovary (CHO) cell mutant (strain PSA-3) which requires exogenously added phosphatidylserine for cell growth because it lacks the ability to synthesize this phospholipid. When PSA-3 cells were grown in the absence of phosphatidylserine, the cellular contents of phosphatidylserine and also phosphatidylethanolamine produced through decarboxylation of phosphatidylserine decreased. Sindbis virus production in the mutant cells decreased immediately upon phosphatidylserine deprivation as did the contents of phosphatidylserine and phosphatidylethanolamine, whereas the cell growth, viability, and syntheses of protein, DNA and RNA remained normal for approx. 40 h phosphatidylserine starvation. Although PSA-3 cells grown without phosphatidylserine for 24 h were able to bind and internalize Sindbis virus almost normally, viral RNA synthesis was greatly reduced in the cells, suggesting that nucleocapsids of internalized Sindbis virus are not normally released into the cytoplasm. Unlike mammalian cell mutants defective in endosomal acidification, PSA-3 cells grown without phosphatidylserine were not resistant to diphtheria toxin. Furthermore, the yield of virions and viral RNA synthesis in PSA-3 cells were not completely restored on brief exposure of the cells to low pH medium following virus adsorption, which is known to induce artificial fusion of the viral envelope with the plasma membrane of normal host cells and then injection of viral nucleocapsids into the cytoplasm. Our data demonstrate the requirement of membrane phospholipids, such as phosphatidylserine and/or phosphatidylethanolamine, in CHO cells for Sindbis virus infection, and we discuss their possible roles.  相似文献   

7.
The distribution of cholesterol between vesicles of different lipid composition at equilibrium has been determined. Small, sonicated unilamellar vesicles and large unilamellar vesicles were incubated at a defined temperature, and aliquots were then obtained at selected times for analysis. Inclusion of a small amount of phosphatidylserine or phosphatidylinositol in the membrane does not appreciably affect the distribution of cholesterol at equilibrium by these measurements. A membrane in the gel state is a poor acceptor of cholesterol. The length of the hydrocarbon chain on the phospholipid may also play a role. Bovine brain sphingomyelin dramatically slows the kinetics of cholesterol transfer, and the equilibrium distribution of cholesterol among vesicles containing sphingomyelin is therefore not observable in these experiments. Data obtained with vesicles containing phosphatidylethanolamine indicate a preference of cholesterol for vesicles composed of phosphatidylcholine compared to vesicles consisting primarily of phosphatidylethanolamine, at equilibrium. Experiments with a chaotropic agent indicate that the nature of the surface of the phosphatidylethanolamine bilayer, and its hydration, are important factors in the distribution of cholesterol among membranes in which phosphatidylethanolamine is present. These data suggest that membrane lipid content may play a role in the distribution of cholesterol among the membranes of a cell.  相似文献   

8.
Large, unilamellar vesicles composed of equimolar amounts of acidic phosopholipids and phosphatidylethanolamine were able to deliver fluorescent dye [5(6)-carboxyfluorescein] or a monoclonal antibody directed against intermediate-filament proteins to a Drosophila cell line (Kc cells). Millimolar Ca2+ or protamine sulfate in microgram quantities triggered rapid, synchronous delivery of either solute. Delivery required a specific lipid composition: liposomes composed of 1:1 mole ratios of phosphatidylethanolamine:phosphatidylserine were able to deliver their contents, but not if phosphatidylcholine was substituted for phosphatidylethanolamine. Light microscopic observation of Kc cells incubated with free dye or antibody alone showed very little uptake, a result indicating that encapsulation within liposomes is a prerequisite for substantial delivery. Moreover, the stability of adhering vesicles in the absence of calcium or protamine sulfate, the lipid specificity, and the rapid onset of intracellular fluorescence after triggering suggest that vesicle-cell fusion is the predominant mode of solute uptake. Fusion of liposomes with the cell membrane was confirmed by freeze-fracture electron microscopy, which showed liposome vesicles first adhering to cell surfaces, then undergoing fusion when calcium or protamine sulfate was added.  相似文献   

9.
Depending on their phospholipid composition, liposomes are endocytosed by, or fuse with, the plasma membrane, of Acanthamoeba castellanii. Unilamellar egg lecithin vesicles are endocytosed by amoeba at 28 degrees C with equal uptake of the phospholipid bilayer and the contents of the internal aqueous space of the vesicles. Uptake is inhibited almost completely by incubation at 4 degrees C or in the presence of dinitrophenol. After uptake at 28 degrees C, the vesicle phospholipid can be visualized by electron microscope autoradiography within cytoplasmic vacuoles. In contrast, uptake of unilamellar dipalmitoyl lecithin vesicles and multilamellar dipalmitoyl lecithin liposomes is only partially inhibited at 4 degrees C, by dinitrophenol and by prior fixation of the amoebae with glutaraldehyde, each of which inhibits pinocytosis. Vesicle contents are taken up only about 40% as well as the phospholipid bilayer. Electron micrographs are compatible with the interpretation that dipalmitoyl lecithin vesicles fuse with the amoeba plasma membrane, adding their phospholipid to the cell surface, while their contents enter the cell cytoplasm. Dimyristoyl lecithin vesicles behave like egg lecithin vesicles while distearoyl lecithin vesicles behave like dipalmitoyl lecithin vesicles.  相似文献   

10.
Synapsin I, a major neuron-specific phosphoprotein, is localized on the cytoplasmic surface of small synaptic vesicles to which it binds with high affinity. It contains a collagenase-resistant head domain and a collagenase-sensitive elongated tail domain. In the present study, the interaction between synapsin I and phospholipid vesicles has been characterized, and the protein domains involved in these interactions have been identified. When lipid vesicles were prepared from cholesterol and phospholipids using a lipid composition similar to that found in native synaptic vesicle membranes (40% phosphatidylcholine, 32% phosphatidylethanolamine, 12% phosphatidylserine, 5% phosphatidylinositol, 10% cholesterol, wt/wt), synapsin I bound with a dissociation constant of 14 nM and a maximal binding capacity of about 160 fmol of synapsin I/microgram of phospholipid. Increasing the ionic strength decreased the affinity without greatly affecting the maximal amount of synapsin I bound. When vesicles containing cholesterol and either phosphatidylcholine or phosphatidylcholine/phosphatidylethanolamine were tested, no significant binding was detected under any conditions examined. On the other hand, phosphatidylcholine vesicles containing either phosphatidylserine or phosphatidylinositol strongly interacted with synapsin I. The amount of synapsin I maximally bound was directly proportional to the percentage of acidic phospholipids present in the lipid bilayer, whereas the Kd value was not affected by varying the phospholipid composition. A study of synapsin I fragments obtained by cysteine-specific cleavage showed that the collagenase-resistant head domain actively bound to phospholipid vesicles; in contrast, the collagenase-sensitive tail domain, though strongly basic, did not significantly interact. Photolabeling of synapsin I was performed with the phosphatidylcholine analogue 1-palmitoyl-2-[11-[4-[3-(trifluoromethyl)diazirinyl]phenyl] [2-3H]undecanoyl]-sn-glycero-3-phosphocholine; this compound generates a highly reactive carbene that selectively interacts with membrane-embedded domains of membrane proteins. Synapsin I was significantly labeled upon photolysis when incubated with lipid vesicles containing acidic phospholipids and trace amounts of the photoactivatable phospholipid. Proteolytic cleavage of photolabeled synapsin I localized the label to the head domain of the molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Summary Phosphatidylserine was found to significantly enchance the binding of phospholipid vesicles to RAW264 macrophages. We have measured the kinetics of non-specific uptake of unilamellar vesicles as a function of phosphatidylserine concentration in these model target membranes. Dimyristoylphosphatidylcholine was the principle component of these phospholipid vesicles. In most experiments, radiolabeled phospholipid and 1 mol % each of both a fluorescent phospholipid and a hapten-containing lipid headgroup were utilized. In the presence of specific anti-hapten antibody phosphatidylserine-containing vesicles are rapidly taken up via phagocytosis. The antibody-independent non-specific uptake of phosphatidylserine-free vesicles was low, as previously reported. However, the presence of 5 mol % phosphatidylserine dramatically enhanced the uptake of phospholipid vesicles by macrophages. This uptake was shown to be principally due to binding to the macrophage surface. Incubation of macrophages in the presence of sodium azide or at 4°C, conditions which are known to inhibit phagocytosis, do not influence the uptake of the lipid vesicles. Fluorescence video-intensification microscopy was used to observe the interaction of carboxyfluorescein-loaded vesicles with macrophages. Fluorescence could not be observed when using phosphatidylserine-free vesicles. However, phosphatidylserine-containing vesicles can be observed bound to the cell periphery. Intracellular fluorescence could not be observed. The binding of phosphatidylserine-containing vesicles was enhanced roughly four-fold over phosphatidylserine because the effect could not be observed with membranes containing 1 mol % or 2.5 mol% phosphatidylserine. In addition, the binding enhancement required the presence of divalent cations in the incubation medium.Abbreviations DMPC dimyristoylphosphatidylcholine - PS phosphatidylserine - DNP-PE dinitrophenyl---minocaproyl-phosphatidylethanolamime - NBDPE N-4-nitrobenzo-2-oxa-1, 3-diazole phosphatidylethanolamine - EDTA ethylenediaminetetraacetic acid  相似文献   

12.
The ATP-dependent glutamate uptake system in synaptic vesicles prepared from mouse cerebellum was characterized, and the levels of glutamate uptake were investigated in the cerebellar mutant mice, staggerer and weaver, whose main defect is the loss of cerebellar granule cells, and the nervous mutant, whose main defect is the loss of Purkinje cells. The ATP-dependent glutamate uptake is stimulated by low concentrations of chloride, is insensitive to aspartate, and is inhibited by agents known to dissipate the electrochemical proton gradient. These properties are similar to those of the glutamate uptake system observed in the highly purified synaptic vesicles prepared from bovine cortex. The ATP-dependent glutamate uptake system is reduced by 68% in the staggerer and 57-67% in the weaver mutant; these reductions parallel the substantial loss of granule cells in those mutants. In contrast, the cerebellar levels of glutamate uptake are not altered significantly in the nervous mutant, which has lost Purkinje cells, but not granule cells. In view of evidence that granule cells are glutamatergic neurons and Purkinje cells are GABAergic neurons, these observations support the notion that the ATP-dependent glutamate uptake system is present in synaptic vesicles of glutamatergic neurons.  相似文献   

13.
1. Crude synaptosomal fractions (P2) from guinea-pig cerebral cortex were incubated in a Krebs-glucose medium containing labelled fatty acids and [3H]glucose. After the shortest incubation period (7.5 min) a high percentage (50-80%) of the total radioactive fatty acids was found in the P2 fractions. 2. After the incubation, the synaptosomal fractions were submitted to hypo-osmotic disruption and subsynaptosomal fractionation was carried out by using discontinuous-sucrose-gradient centrifugation. The specific radioactivities of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were determined in fractions D (synaptic vesicles), E (microsomal preparation) and H (disrupted synaptosomes), as were the specific activities of a number of marker enzymes and the distribution of acetylcholine. 3. By using [14C]oleate, [14C]arachidonate, [3H]palmitate and [3H]glucose, the order to specific radioactivities in fraction D was found to be: phosphatidylinositol greater than phosphatidylcholine greater than phosphatidylserine greater than phosphatidylethanolamine. 4. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were always higher in fraction D than in fraction E. As fraction E had higher specific activities of several membrane marker enzymes, the enhanced labelling found in fraction D was considered to be localized in the synaptic vesicles. In this fraction, phosphatidylinositol made particularly large contributions to the total phospholipid labelling derived from [14C]arachidonate and [3H]glucose. 5. The similar labelling ratios of fatty acid/glucose in the phospholipids of fractions D and E, and the high specific radioactivities in the total phospholipid of the soluble fraction O, suggested intrasynaptosomal phospholipid transport.  相似文献   

14.
E Stenberg  E Ring    A R Strm 《Applied microbiology》1984,47(5):1090-1095
Alteromonas putrefaciens NCMB 1735 required the presence of NaCl for anaerobic growth with serine, cysteine, and formate as substrate and trimethylamine oxide ( TMAO ) as external electron acceptor. When lactate was substrate, the organism grew equally well in the absence of NaCl. Anaerobic uptake of glutamate, aspartate, serine, cysteine, and lactate in resting cells was strongly stimulated with NaCl, and cytoplasmic membrane vesicles energized by electron transfer from formate to TMAO displayed active Na+-dependent uptake of serine. The data suggested that participation in transport processes was the only vital function of Na+ in A. putrefaciens. Formate- and TMAO -dependent anaerobic serine uptake in vesicles was sensitive to the protonophore carbonyl cyanide m-chlorophenyl-hydrazone and the ionophores valinomycin and gramicidin. Transport-active vesicles contained cytochromes of b and c type, and both serine uptake and TMAO reduction with formate were inhibited with the electron transfer inhibitor 2-heptyl-4-hydroxyquinoline N-oxide. Thus, reduction of TMAO to trimethylamine in A. putrefaciens appeared to be coupled with a chemiosmotic mechanism of energy conversion.  相似文献   

15.
The effect of growth phase on the membrane-associated phospholipid biosynthetic enzymes CDP-diacylglycerol synthase, phosphatidylserine synthase, phosphatidylinositol synthase, and the phospholipid N-methyltransferases in wild-type Saccharomyces cerevisiae was examined. Maximum activities were found in the exponential phase of cells grown in complete synthetic medium. As cells entered the stationary phase of growth, the activities of the CDP-diacylglycerol synthase, phosphatidylserine synthase, and the phospholipid N-methyltransferases decreased 2.5- to 5-fold. The subunit levels of phosphatidylserine synthase and the cytoplasmic-associated enzyme inositol-1-phosphate synthase were not significantly affected by the growth phase. When grown in medium supplemented with inositol-choline, cells in the exponential phase of growth had reduced CDP-diacylglycerol synthase, phosphatidylserine synthase, and phospholipid N-methyltransferase activities, with repressed subunit levels of phosphatidylserine synthase and inositol-1-phosphate synthase compared with cells grown without inositol-choline. Enzyme activity levels remained reduced in the stationary phase of growth of cells supplemented with inositol-choline. The phosphatidylserine synthase and inositol-1-phosphate synthase subunit levels, however, were depressed. Phosphatidylinositol synthase (activity and subunit) was not affected by growth in medium supplemented with or without inositol-choline or the growth phase of the culture. The phospholipid composition of cells in the exponential and stationary phase of growth was also examined. The phosphatidylinositol to phosphatidylserine ratio doubled in stationary-phase cells. The phosphatidylcholine to phosphatidylethanolamine ratio was not significantly affected by the growth phase of cells.  相似文献   

16.
Sodium-induced aggregations of sonicated vesicles prepared from synthetic phosphatidic acid and from its 1 : 1 mixtures with synthetic phosphatidylethanolamine and phosphatidylcholine were studied by turbidimetric measurements. The aggregation reactions were almost completely reversible on change in the Na+ concentration, pH or temperature. The threshold concentrations of Na+ for aggregation of pure dipalmitoylphosphatidic acid vesicles and mixed dipalmitoylphosphatidylenolamine- and dimyristoylphosphatidylcholine-dipalmitoylphosphatidic acid vesicles were found to be 200, 310 and 550 mM, respectively, at 25° and pH 7.2. The hydrocarbon chain lengths of phosphatidic acid and phosphatidylethanolamine had little effect on the threshold concentrations. The threshold concentrations for phospholipid vesicles composed of phosphatidic acid alone or its 1 : 1 mixture with phosphatidylethanolamine were changed by varying either the pH or temperature, while that for phosphatidylcholine-phosphatidic acid vesicles was almost independent of the pH and temperature, implying that aggregation of the latter vesicles is induced by a somewhat different mechanism.  相似文献   

17.
A sensitive method which utilizes fluorescence energy transfer to assay Ca2+ -or Mg2+ -mediated fusion of phospholipid vesicles is reported. More than 85% quenching results when phosphatidylserine vesicles labelled with dansyl phosphatidylethanolamine (donor) are fused with vesicles labelled with rhodamine phosphatidylethanolamine (acceptor) in the presence of 5 mM CaCl2 or 10 mM MgCl2. Higher concentrations of divalent cations are required to obtain maximal quenching when phosphatidylserine is partially replaced with phosphatidylethanolamine or phosphatidylcholine. The rate of vesicle fusion is dependent upon the concentrations of both cation and vesicles. Maximum quenching occurs within 5 min using phosphatidylserine vesicles and 5 mM Ca2+, but quenching is incomplete even after 20 h with 0.8--2 mM Ca2+. This probably reflects the heterogeneous size distribution of these vesicles, since the extent of fusion was found to correlated with vesicle size. Binding of antibody to membrane-localized phenobarbital hapten effectively blocks Ca2+ -mediated vesicle fusion. This effect can be inhibited by preincubation of the antibody with phenobarbital. Leakage of tempocholine from intact vesicles induced by 5 mM Ca2+ occurs even when fusion is prevented by bound antibody. This demonstrates that fusion is not a necessary requirement for Ca2+ -induced leakage.  相似文献   

18.
We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.  相似文献   

19.
Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.  相似文献   

20.
The effect of sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate on L-[U-14C]serine incorporation into phosphatidylserine and phosphatidylserine-derived phosphatidylethanolamine was investigated in intact glioma C6 cells. Sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate are potent signalling molecules which, due to their physicochemical features, may function as amphiphilic compounds. It has been found that sphingosine and sphingosylphosphorylcholine (amphiphilic cations) significantly increase [14C]phosphatidylserine synthesis and decrease the amount of 14C-labeled phosphatidylethanolamine. Sphingosine 1-phosphate (an amphiphilic anion) was without effect on phosphatidylserine synthesis but, similarly as sphingosine and sphingosylphosphorylcholine, reduced the conversion of phosphatidylserine to phosphatidylethanolamine. These results strongly suggest that sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate can modulate cellular phospholipid homeostasis by stimulation of phosphatidylserine synthesis and an interference with phosphatidylserine decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号