首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Whitmarsh  W.A. Cramer 《BBA》1978,501(1):83-93
Cytochrome b-559, which is normally reduced in the dark, was oxidized by preillumination in the presence of N-methyl-phenazonium methosulfate with low intensity far-red light. The average half-time for the photoreduction of oxidized cytochrome b-559 by a long actinic flash ranged from 90 to 110 ms. In the presence of 0.25 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea the half-time for the photoreduction increased to 230 ms although the extent of the absorbance increase was unchanged. Under similar conditions inhibition of electron transport by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the increase in the chlorophyll fluorescence show that a large fraction of the Photosystem II reaction centers are blocked. These results are consistent with the concept that electrons are shared between different photosynthetic units by a common pool of plastoquinone and imply that the principle pathway for the reduction of cytochrome b-559 by Photosystem II occurs through plastoquinone. In the presence of the uncoupler gramicidin which stimulates non-cyclic electron transport, the rate of photoreduction of cytochrome b-559 is slower (t12 = 180 ms), from which it is inferred that cytochrome b-559 competes with cytochrome f for electrons out of this pool. Comparison of cytochrome b-559 photoreduction and electron transport rates using untreated and KCN-treated chloroplasts indicate that, under conditions of basal electron transport from water to ferricyanide, approximately one-fifth of the electrons from Photosystem II go through cytochrome b-559 to ferricyanide. Further support for this pathway is provided by a comparison of the effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (dibromothymoquinone) on the rates of reduction of cytochrome b-559 and ferricyanide.  相似文献   

2.
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e, hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100 +/- 10 ms, compared to 6-10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t 1/2 = 25-35 ms. The addition of uncouplers, which caused stimulatory effect on ferricyanide reduction under the same experimental conditions resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

3.
Dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) is reputed to be a plastoquinone antagonist which prevents the photoreduction of hydrophilic oxidants such as ferredoxin-NADP+. However, we have found that dibromothymoquinone inhibits only a small part of the photoreduction of lipophilic oxidants such as oxidized p-phenylenediamine. Dibromothymoquinone-resistant photoreduction reactions are coupled to phosphorylation, about 0.4 molecules of ATP consistently being formed for every pair of electrons transported. Dibromothymoquinone itself is a lipophilic oxidant which can be photoreduced by chloroplasts, then reoxidized by ferricyanide or oxygen. The electron transport thus catalysed also supports phosphorylation and the Pe2 ratio is again 0.4. It is concluded that there is a site of phosphorylation before the dibromothymoquinone block and another site of phosphorylation after the block. The former site must be associated with electron transfer reactions near Photosystem II, while the latter site is presumably associated with the transfer of electrons from plastoquinone to cytochrome f.  相似文献   

4.
Pierre Joliot  Anne Joliot 《BBA》1984,765(2):210-218
The redox changes of cytochrome b-563 (cytochrome b), cytochrome f, plastocyanin and P-700 were measured on dark-adapted chloroplasts after illumination by a series of flashes in oxidizing conditions (0.1 mM ferricyanide). In these conditions, the plastoquinone pool is fully oxidized and the only available plastoquinol are those formed by Photosystem (PS) II reaction. According to the two-electron gate mechanism proposed by Bouges-Bocquet (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250–256), plastoquinol is mainly formed after the second and the fourth flashes. After the second flash, the reoxidation of plastoquinol occurs by a concerted reaction which reduces most of the cytochrome b present and a fraction of PS I donors. Most of these electrons are stored on P-700, which implies a large equilibrium constant between the secondary PS I donors and P-700. One electron is stored on cytochrome b during a time (t12 ≈ 1 s) much longer than the dark interval between flashes. After the fourth flash, a new plastoquinol molecule is formed, which induces the reduction of PS I donors with no corresponding further reduction of cytochrome b. The number of electrons transferred after the fourth flash is larger than that transferred after the second flash although the rate of transfer is lower. To interpret these data, we assume that the plastoquinol formed after the fourth flash is reoxidized by a second concerted reaction: one electron is directly transferred to PS I donors while the other cooperates with the electron stored on cytochrome b to reduce a plastoquinone molecule localized on a site close to the outer face of the membrane. This newly formed plastoquinol crosses the membrane and transfers a second electron to PS I donors. This interpretation resembles a model proposed by Velthuys (Velthuys, B.R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2765?2769) and which belongs to the modified Q-cycle class of models.  相似文献   

5.
The resolved flavoprotein and cytochrome b559 components of the NADPH dependent O2?? generating oxidase from human neutrophils were the subject of further study. The resolved flavoprotein, depleted of cytochrome b559, was reduced by NADPH under anaerobic conditions and reoxidized by oxygen. NADPH dependent O2?? generation by the resolved flavoprotein fraction was not detectable, however it was competent in the transfer of electrons from NADPH to artificial electron acceptors. The resolved cytochrome b559, depleted of flavoprotein, demonstrated no measureable NADPH dependent O2?? generating activity and was not reduced by NADPH under anaerobic conditions. The dithionite reduced form of the resolved cytochrome b559 was rapidly oxidized by oxygen, as was the cytochrome b559 in the intact oxidase.  相似文献   

6.
Spectrophotometric, kinetic, thermodynamic and stoichiometric properties of the low-potential b-type cytochrome of chromatophores from Rhodopseudomonas sphaeroides are reported. Cytochrome b-566 has a double α-band with maxima at 559 and 566 nm. Resolution of the spectrum by full-spectral redox potentiometry showed no indication that the two peaks represent more than one component. The component titrated with Em,7 ≈ ?80 ± 10 mV. By appropriate choice of wavelength pairs and by subtraction of the contribution due to other components, the kinetics of cytochrome b-566 absorbance changes following flash excitation have been resolved from those of other components. Time-resolved flash spectra corrected for the contributions of other components are consistent with the behavior of both peaks of the α-band as a single kinetic species. The kinetics of cytochrome b-566 in the presence of antimycin show that the reduction of this cytochrome occurred only if cytochrome b-561 was reduced before the flash, either chemically, by poising the ambient redox potential (Eh) below the Em of cytochrome b-561 (Em,7 ≈ 50 mV), or photochemically at higher redox potentials by a previous flash. The rate of reduction of cytochrome b-566 varied with Eh. At low Eh (approx. 0 mV) reduction on the first flash showed t12 ≈ 1.25 ms; at high Eh (approx. 180 mV) reduction on the second flash showed t12 ≈ 10 ms. In the absence of antimycin at Eh ≈ 0 mV, cytochrome b-566 was observed to become rapidly reduced (t12 ≈ 500 μs) and then reoxidized (t12 ≈ 2 ms) after a single flash. At higher redox potentials (Eh > 80 mV) no kinetic changes which could be unambiguously attributed to cytochrome b-566 were observed following a single flash. The results are interpreted in terms of a Q-cycle mechanism in which the reductant for cytochrome b-566 is the semiquinone formed on oxidation of ubiquinol from the quinone pool. The oxidation of the ubiquinol occurs by a concerted reaction in which one electron is accepted by the Rieske-type FeS center and the other by cytochrome b-566. We suggest that the kinetic characteristics may indicate a pathway for reduction of the b-type cytochromes in which cytochrome b-566 is the immediate electron acceptor and donates to cytochrome b-561 in a serial pathway. The experimental results in the presence of antimycin are compared with data from a computer simulation of the thermodynamic behavior of the chain, and the computer model is shown to provide an excellent fit.  相似文献   

7.
The in vitro incorporation of cytochrome b5 into purified plasma membranes was investigated by biochemical and immunological methods. Plasma membrane preparations incorporated three times less cytochrome b5 than did microsomal preparations; 60% of this cytochrome b5 could not be reduced by the NADH-cytochrome b5 reductase and was considered as being bound to the plasma membrane. The morphological observations made after the immunochemical labeling of cytochrome b5 clearly showed a good but asymmetrical distribution of the ferritin labeling: only the inner face of the plasma membrane incorporated cytochrome b5. These results are discussed with respect to theories which concern the subcellular membrane relationships in the cell.  相似文献   

8.
A protein named oxidation factor can be reversibly removed from succinate-cytochrome c reductase complex and shown to be required for electron transfer between succinate and cytochrome c. This protein is required for reduction of cytochrome c1 and, in the presence of antimycin, for reduction of both cytochromes b and c1. These results are consistent with a protonmotive Q cycle mechanism in which the oxidation factor catalyzes electron transfer from reduced quinone to cytochrome c1 and thus liberates from reduced quinone one of two protons required for energy conservation during electron transfer through the cytochrome b-c1 complex.  相似文献   

9.
NADPH reduces both liver microsomal cytochrome P-450 and cytochrome b5. In the presence of CO, ferrous cytochrome P-450 can slowly transfer electrons to amaranth, an azo dye. This reaction is followed by the reoxidation of cytochrome b5 which proceeds at essentially the same rate as does cytochrome P-450 oxidation. It is suggested that cytochrome b5 directly reduces cytochrome P-450 in rat liver microsomes.  相似文献   

10.
Highly purified divalent and monovalent antibodies against cytochrome b5, anti-b5 immunoglobulin G (IG) and anti-b5 Fab', were used in elucidating the role of this cytochrome in the drug-oxidizing enzyme system of mouse liver microsomes. Anti-b5 IG strongly inhibited not only NADH-supported but also NADPH-supported oxidation of 7-ethoxycoumarin and benzo(a)pyrene, but had no inhibitory action on the oxidation of aniline. Anti-b5 Fab' also inhibited NADH-supported and NADPH-supported benzo(a)pyrene hydroxylation. These observations indicate an essential role of cytochrome b5 in the transfer of electrons not only from NADH but also from NADPH to cytochrome P-450 in the microsomal oxidation of some drugs, but not of aniline.  相似文献   

11.
12.
13.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   

14.
15.
16.
A protease which generates a soluble hemepeptide from bovine liver microsomal cytochrome b5 has been isolated from the membrane fraction of rabbit reticulocytes. Inhibition by pepstatin and an acidic pH optimum indicate that the protease belongs to the acid protease class. Little cytochrome b5-processing activity is observed in rabbit erythrocytes. We suggest that the protease may be involved in the processing which generates the proteins of the methemoglobin reduction system from their membrane-bound precursors during the maturation of the erythroid cell.  相似文献   

17.
Stable ubisemiquinone radical(s) in the cytochrome b?c1-II complex of bovine heart was observed following reduction by succinate in the presence of catalytic amounts of succinate dehydrogenase. The radical was abolished by addition of antimycin A, but a residual radical remained in the presence of excess exogenous Q2. The radical showed an EPR signal of g = 2.0046 ± .003 at X band (~9.4 GHz) with no resolved hyperfine structure and had a line width of 8.1 ± .5 Gauss at 23°C. The Q band (35 GHz) spectra showed wellresolved g-anisotropy and had a field separation between derivative extrema of 26 ± 1 Gauss. This radical is evidently from QP-C. These observations substantiate that the radical is immobilized and bound to a protein. The QP-S radical was demonstrated in the cytochrome b-c1-II complex only in the presence of more than a catalytic amount of succinate dehydrogenase and cytochrome b-c1. This signal was not antimycin a inhibitory. The signal amplitude paralleled the reconstitutive enzymic activity of succinate-cytochrome c reductase from succinate dehydrogenase and the cytochrome b-c1-II complex.  相似文献   

18.
A mathematical analysis is described which measures the effects of actinic light intensity and concentration of an artificial electron donor on the steady-state light-induced redox level of a reaction-center pigment (e.g. P-700) and on the overall light-induced electron flux (e.g. reduction of NADP+). The analysis led to a formulation (somewhat similar to the Michaelis-Menten equation for enzyme kinetics) in which a parameter, I12, is defined as the actinic light intensity that, at a given concentration of electron donor, renders the reaction-center pigment half oxidized and half reduced. To determine the role of a presumed reaction-center pigment, I12 is compared with another parameter, equivalent to I12, that is obtained independently of the reaction-center pigment by measuring the effect of actinic light intensity and concentration of electron donor on the overall electron flow.The theory was tested and validated in a model system with spinach Photosystem I chloroplast fragments by measurements of photooxidation of P-700 and light-induced reduction of NADP+ by reduced 2,6-dichlorophenolindophenol. A possible extension of this mathematical analysis to more general electron-transport systems is discussed.  相似文献   

19.
The cytochrome b5b5 reductase system solubilized from microsomes exhibits monophasic reduction kinetics over the temperature range 15 ° to ?25 °C in aqueous/ethylene glycol co-solvent, whereas in intact microsomes, the process becomes increasingly heterogeneous below 0 °C, reflecting heterogeneities in membrane structure observable as distributions in reaction rates and activation energies.  相似文献   

20.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号