共查询到20条相似文献,搜索用时 0 毫秒
1.
Importance of sulfation of gastrin or cholecystokinin (CCK) on affinity for gastrin and CCK receptors 总被引:2,自引:0,他引:2
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety. 相似文献
2.
Sturany S Van Lint J Gilchrist A Vandenheede JR Adler G Seufferlein T 《The Journal of biological chemistry》2002,277(33):29431-29436
Recently, we cloned a novel serine/threonine kinase termed protein kinase D2 (PKD2). PKD2 can be activated by phorbol esters both in vivo and in vitro but also by gastrin via the cholecystokinin/CCK(B) receptor in human gastric cancer cells stably transfected with the CCK(B)/gastrin receptor (AGS-B cells). Here we identify the mechanisms of gastrin-induced PKD2 activation in AGS-B cells. PKD2 phosphorylation in response to gastrin was rapid, reaching a maximum after 10 min of incubation. Our data demonstrate that gastrin-stimulated PKD2 activation involves a heterotrimeric G alpha(q) protein as well as the activation of phospholipase C. Furthermore, we show that PKD2 can be activated by classical and novel members of the protein kinase C (PKC) family such as PKC alpha, PKC epsilon, and PKC eta. These PKCs are activated by gastrin in AGS-B cells. Thus, PKD2 is likely to be a novel downstream target of specific PKCs upon the stimulation of AGS-B cells with gastrin. Our data suggest a two-step mechanism of activation of PKD2 via endogenously produced diacylglycerol and the activation of PKCs. 相似文献
3.
Addition of gastrin or cholecystokinin octapeptide (CCK-8) to cultures of Rat-1 cells stably transfected with the CCK2 (CCK(B)/gastrin) receptor induced protein kinase D (PKD) activation that was detectable within 1 min and reached a maximum ( approximately 10-fold) after 2.5 min of hormonal stimulation. Half-maximal PKD activation for both CCK-8 and gastrin was achieved at 10 nM. Treatment with various concentrations of the selective PKC inhibitors Ro 31-8220 or GF-I potently blocked PKD activation induced by subsequent addition of CCK-8 in a concentration-dependent fashion. Our results indicate that PKC-dependent PKD activation is a novel early event in the action of gastrin and CCK-8 via CCK2 receptors. 相似文献
4.
Susan Roosenburg Peter Laverman Floris L. van Delft Otto C. Boerman 《Amino acids》2011,41(5):1049-1058
Cholecystokinin (CCK) receptors are overexpressed in numerous human cancers, like medullary thyroid carcinomas, small cell lung cancers and stromal ovarian cancers. The specific receptor-binding property of the endogenous ligands for these receptors can be exploited by labeling peptides with a radionuclide and using these as carriers to guide the radioactivity to the tissues that express the receptors. In this way, tumors can be visualized using positron emission tomography and single photon emission computed tomography imaging. A variety of radiolabeled CCK/gastrin-related peptides has been synthesized and characterized for imaging. All peptides have the C-terminal CCK receptor-binding tetrapeptide sequence Trp-Met-Asp-Phe-NH2 in common or derivatives thereof. This review focuses on the development and application of radiolabeled CCK/gastrin peptides for radionuclide imaging and radionuclide therapy of tumors expressing CCK receptors. We discuss both preclinical studies as well as clinical studies with CCK and gastrin peptides. 相似文献
5.
Correlation between Ca(2+) oscillation and cell proliferation via CCK(B)/gastrin receptor 总被引:3,自引:0,他引:3
Gastrin stimulates cell proliferation through the CCK(B) receptor coupled to Gq-protein, whereas the m3 muscarinic receptor, which also couples to Gq, has no trophic effects. In order to elucidate the cause of the difference, we stably transfected CHO cells with human CCK(B) and m3 receptors. Stimulation of the CCK(B), but not the m3 receptor increased cell growth. Activation of MAP kinase via the m3 receptor was to the same extent as that via CCK(B), indicating that there is an initial signaling common to both receptors. Stimulation of either receptor induced a transient increase in [Ca(2+)](i) followed by a sustained plateau phase. After 2 h of stimulation, the [Ca(2+)](i) response to the m3 receptor disappeared, whereas that to the CCK(B) receptor remained as a [Ca(2+)](i) oscillation. Removal of extracellular Ca(2+), which abolished [Ca(2+)](i) oscillation, completely inhibited DNA synthesis via CCK(B). When the C-terminal part of the CCK(B) receptor was truncated, the trophic effect as well as the [Ca(2+)](i) response after 2 h of stimulation disappeared, whereas the chimeric CCK(B) receptor with the C-terminal region of the m3 receptor preserved its ability to elicit both DNA synthesis and [Ca(2+)](i) oscillation. These results suggest that desensitization might be a principal determinant of cell proliferation, and the persistence of the [Ca(2+)](i) response as [Ca(2+)](i) oscillation could be essential for this type of signal transduction. 相似文献
6.
A comparison of the conformational characteristics of the related hormones [Nle(15)] gastrin-17 and [Tyr(9)-SO(3)] cholecystokinin-15, in membrane-mimetic solutions of dodecylphosphocholine micelles and water, was undertaken using NMR spectroscopy to investigate the possibility of a structural motif responsible for the two hormones common ability to stimulate the CCK(2) receptor. Distance geometry calculations and NOE-restrained molecular dynamics simulations in biphasic solvent boxes of decane and water pointed to the two peptides adopting near identical helical C-terminal configurations, which extended one residue further than their shared pentapeptide sequence of Gly-Trp-Met-Asp-Phe-NH(2). The C-terminal conformation of [Nle(15)] gastrin-17 contained a short alpha-helix spanning the Ala(11)-Trp(14) sequence and an inverse gamma-turn centered on Nle(15) while that of [Tyr(9)-SO(3)] cholecystokinin-15 contained a short 3(10) helix spanning its Met(10) to Met(13) sequence and an inverse gamma-turn centered on Asp(14). Significantly, both the C-terminal helices were found to terminate in type I beta-turns spanning the homologous Gly-Trp-Met-Asp sequences. This finding supports the hypothesis that this structural motif is a necessary condition for CCK(2) receptor activation given that both gastrin and cholecystokinin have been established to follow a membrane-associated pathway to receptor recognition and activation. Comparison of the conformations for the non-homologous C-terminal tyrosyl residues of [Nle(15)] gastrin-17 and [Tyr(9)-SO(3)] cholecystokinin-15 found that they lie on opposite faces of the conserved C-terminal helices. The positioning of this tyrosyl residue is known to be essential for CCK(1) activity and non-essential for CCK(2) activity, pointing to it as a possible differentiator in CCK(1)/CCK(2) receptor selection. The different tyrosyl orientations were retained in molecular models for the [Nle(15)] gastrin-17/CCK(2) receptor and [Tyr(9)-SO(3)] cholecystokinin-15/CCK(1) receptor complexes, highlighting the role of this residue as a likely CCK(1)/CCK(2) receptor differentiator. 相似文献
7.
Weiland TJ Voudouris NJ Kent S 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,292(1):R112-R123
Systemic infection produces a highly regulated set of responses such as fever, anorexia, adipsia, inactivity, and cachexia, collectively referred to as sickness behavior. Although the expression of sickness behavior requires immune-brain communication, the mechanisms by which peripheral cytokines signal the brain are unclear. Several mechanisms have been proposed for neuroimmune communication, including the interaction of cytokines with peripheral nerves. A critical role has been ascribed to the vagus nerve in mediating sickness behavior after intraperitoneally delivered immune activation, and converging evidence suggests that this communication may involve neurochemical intermediaries afferent and/or efferent to this nerve. Mice lacking functional CCK(2/gastrin) receptors (CCK(2)KO) and wild-type (WT) controls were administered LPS (50, 500, or 2,500 microg/kg; serotype 0111:B4; ip). Results indicate a role for CCK(2) receptor activation in the initiation and maintenance of LPS-induced sickness behavior. Compared with WT controls, CCK(2)KO mice were significantly less affected by LPS on measures of body temperature, activity, body weight, and food intake, with the magnitude of effects increasing with increasing LPS dose. Although activation of CCK(2) receptors at the level of the vagus nerve cannot be excluded, a possible role for these receptors in nonvagal routes of immune-brain communication is suggested. 相似文献
8.
9.
The fully active gastrin and CCK analogues [Nle15]-gastrin- 17 and [Nle, Thr]-CCK-9 were analysed for their Ca2+ and Tb3+ affinities in various membrane mimetic conditions. In TFE both gastrin and CCK exhibited high affinities for calcium and terbium. At saturation level identical metal ion/peptide ratios were determined with Ca2+ and Tb3+, i.e. R = 3 for gastrin and R = 1 for CCK, confirming the very similar coordination properties of the two metal ions. The conformational effects of both metal ions were found to be very similar with a disordering effect in the case of gastrin and a conformational transition to β-turn type structure in the case of CCK. In order to mimic more properly physiological conditions, similar experiments were performed in the prsence of phospholipid bilayers. No interaction of the peptides with the bilayers was observed even in the presence of phospholipid bilayers. No interaction of the peptides with the bilayers was observed even in the presence of mmolar Ca2+ concentrations. Induced lipid interaction via N-terminal lipodervatization of gastrin and CCK allowed to translocate quantitatively the two hormones into phospholipid bilayers and to examine the effect of extravesicular Ca2+ on the conformation of the peptide headgroups and on their display at the water/lipid interphase. The CCK moiety of the lipo-CCK inserted into phospholipid bilayers interacts with the lipid phase and addition of Ca2+ enhances the clustering of the peptide headgroups in a more β-sheet type conformation. Conversely, insertion of lipo-gastrin into the bilayers leads to full exposure of the gastrin headgroup to the bulk water in predominantly random coil structure. Again Ca2+ provokes aggregation. As the lipo-peptide/phospholipid system still represents only an artificial model, it remains hazardous to derive a biological relevance from these data. The significantly higher affinity of lanthanide ions than Ca2+ for the peptides could well play a role in the inhibibitory activity of lanthanum on the signal transduction of the CCK family of hormones. 相似文献
10.
The importance of residues in the second hairpin loop and the C-terminal end of mammalian cystatin B for binding of proteinases was elucidated by mutagenesis of the bovine inhibitor. Bovine cystatin B was modeled onto the crystal structure of the human inhibitor in complex with papain with minimal structural changes. Substitution of the two deduced contact residues in the second hairpin loop, Leu-73 and His-75, with Gly resulted in appreciably reduced affinities for papain and cathepsins H and B. These losses indicated that the two residues together contribute 20-30% of the free energy of binding of cystatin B to these enzymes and that Leu-73 is responsible for most of this contribution. In contrast, the small decrease in the affinity for cathepsin L suggested that the second hairpin loop is less important for inhibition of this proteinase. Replacement of the contact residue in the C-terminal end, Tyr-97, with Ala resulted in losses in affinity for papain and cathepsins L and H that were consistent with Tyr-97 contributing 6-12% of the energy of binding of cystatin B to these enzymes. However, this substitution minimally affected the affinity for cathepsin B, indicating that the C-terminal end is of limited importance for binding of this proteinase. All affinity decreases were due predominantly to increased dissociation rate constants. These results show that both the second hairpin loop and the C-terminal end of cystatin B contribute to anchoring the inhibitor to target proteinases, each of the two regions interacting with a different domain of the enzyme. However, the relative contributions of these two interactions vary with the proteinase. 相似文献
11.
Furuse M 《The Journal of experimental zoology》1999,283(4-5):448-454
The regulation of cholecystokinin (CCK) and gastrin release in the chicken and their endogenous actions are summarized. Both dietary protein and amino acids stimulated CCK releases. Among dietary fat sources, medium-chain triacylglycerol (MCT) was a potent stimulator of CCK release compared with long-chain triacylglycerol (LCT). However, it is difficult to explain that endogenous CCK released by those stimulators has an important role in the avian gastrointestinal physiology. Luminal acids may be an important regulator in pancreatic enzyme and fluid secretion. Gastrin (a regulator of luminal acid secretion) release was stimulated by food components, strongly by MCT, but not by LCT, and weakly by some amino acids, and was inhibited by luminal acids. Luminal acids controlled food passage from the crop. In conclusion, gastrointestinal physiology may be directly regulated by luminal acid rather than by the gastrin/CCK family in the chicken. 相似文献
12.
The interaction between the 1-47 N-terminus fragment of the cholecystokinin receptor and the nonsulfated cholecystokinin octapeptide, CCK8, is monitored by fluorescence emission. Quenching of the fluorescence intensities is observed on binding. Dissociation constants calculated by these data are in the same submicromolar range as found for the binding of linear CCK8 analogues to B-type receptors. Although detailed structural information cannot be obtained, fluorescence emission is more sensitive than other techniques and permits fast detection of receptor-ligand interaction. 相似文献
13.
F Gardoni L H Schrama J J van Dalen W H Gispen F Cattabeni M Di Luca 《FEBS letters》1999,456(3):394-398
Ca2+/calmodulin-dependent protein kinase II (CaMKII), a multifunctional, widely distributed enzyme, is enriched in post-synaptic densities (PSDs). Here, we demonstrate that CaMKII binds to a discrete C-terminal region of the NR2A subunit of NMDA receptors and promotes the phosphorylation of a Ser residue of this NMDA receptor subunit. Glutathione S-transferase (GST)-NR2A(1349-1464) binds native CaMKII from solubilised hippocampal PSDs in 'pull-out' and overlay experiments and this binding is competed by recombinant alphaCaMKII(1-315). The longer GST-NR2A(1244-1464), although containing the CaMKII phosphosite Ser-1289, binds the kinase with a lower efficacy. CaMKII association to NR2A(1349-1464) is positively modulated by kinase autophosphorylation in the presence of Ca2+/calmodulin. These data provide direct evidence for a mechanism modulating the synaptic strength. 相似文献
14.
K Hashido T Gamou M Adachi H Tabuchi T Watanabe Y Furuichi C Miyamoto 《Biochemical and biophysical research communications》1992,187(3):1241-1248
We have investigated the function of N-terminal and C-terminal domains of the human ETA receptor by expressing truncated mutants in COS-7 cells. Three kinds of ETA receptors truncated in the N-terminal extracellular or C-terminal intracellular domains were produced. Deletion of the entire extracellular N-terminal or intracellular C-terminal domain completely inactivated the ET-1 binding activity. However, the deletion of one half of the N-terminal extracellular domain of the ETA receptor, missing one of two N-linked glycosylation sites, maintained complete binding activity. Specific monoclonal antibodies detected all the truncated ETA receptors in the cell membrane fraction of transfected COS-7 cells. The size of the ETA receptor was heterogeneous due to differential glycosylation and distributed in 48K, 45K and 42K dalton bands in Western blot analysis. These results demonstrated that a part of the N-terminal domain in close proximity to the first transmembrane region is required for the ligand binding activity of the ETA receptor, and the C-terminal domain is perhaps necessary as an anchor for maintenance of the binding site. 相似文献
15.
Human alpha(2)-macroglobulin-proteinase complexes bind to their receptor, the low density lipoprotein receptor-related protein (LRP), through a discrete 138-residue C-terminal receptor binding domain (RBD), which also binds to the beta-amyloid peptide. We have used NMR spectroscopy on recombinantly expressed uniformly (13)C/(15)N-labeled human RBD to determine its three-dimensional structure in solution. Human RBD is a sandwich of two antiparallel beta-sheets, one four-strand and one five-strand, and also contains one alpha-helix of 2.5 turns and an additional 1-turn helical region. The principal alpha-helix contains two lysine residues on the outer face that are known to be essential for receptor binding. A calcium binding site (K(d) approximately 11 mM) is present in the loop region at one end of the beta-sandwich. Calcium binding principally affects this loop region and does not significantly perturb the stable core structure of the domain. The structure and NMR assignments will enable us to examine in solution specific binding of RBD to domains of the receptor and to beta-amyloid peptide. 相似文献
16.
The influence of cadmium on basal and stimulated plasma levels of gastrin, cholecystokinin (CCK), and pancreatic polypeptide (PP) was investigated in conscious dogs using three doses of cadmium (0.15, 0.5, and 0.75 mg Cd/kg-h). Levels of gastrointestinal (GI) hormones were stimulated with bombesin (BBS), a peptide known to stimulate GI hormone release. Plasma cadmium was measured employing atomic absorption spectrophotometry and GI hormone levels were measured with specific radioimmunoassays (RIA). Basal plasma levels of hormones (pg/mL) in the dogs were in the range (mean ± SE): 38±5 to 44±6 for gastrin, 80±25 to 107±17, for CCK and 120±5 to 142±5 for PP; these levels did not change with cadmium. Significant increases above basal levels in all three hormones were found with infusions of BBS and with BBS plus cadmium. Gastrin levels remained steady during Cd and saline after BBS; however, CCK and PP levels dropped to values that were 68 and 73% less than their stimulated peak levels. With reinfusion of BBS, gastrin, CCK, and PP were significantly elevated above basal; however, the peak values for CCK and PP, but not gastrin, were less than those found during the first BBS infusion. The data suggest that in response to bombesin, cadmium has little or no effect on the release of gastrin, but that is exerts a latent effect on the release of both CCK and PP. 相似文献
17.
The thermodynamics of the interaction of glucocorticoids with their receptor were studied in cytosol from human lymphoblastoid cells. The rate and affinity constants of dexamethasone and cortisol between 0 degree and 25 degrees C were calculated by curve-fitting from time-course and equilibrium kinetics. The data were consistent with a simple reversible bimolecular interaction. Arrhenius and Van't Hoff plots were curvilinear for both steroids. At equilibrium, the solution for the equation delta G = delta H - T X delta S (eqn. 1) was (in kJ X mol-1) -47 = 36 - 83 (dexamethasone) and -42 = -9 - 33 (cortisol) at 0 degree C. Enthalpy and entropy changes decreased quasi-linearly with temperature such that, at 25 degrees C, the respective values were -50 = -75 + 25 and -43 = -48 + 5. Thus, for both steroids, the interaction was entropy-driven at low temperature and became entirely enthalpy-driven at 20 degrees C. Thermodynamic values for the transition state were calculated from the rate constants. For the forward reaction, eqn. (1) gave 45 = 84 - 39 (dexamethasone) and 46 = 60 - 14 (cortisol) at 0 degree C, and 44 = 24 + 20 (dexamethasone) and 46 = 28 + 18 (cortisol) at 25 degrees C. These data fit quite well with a two-step model [Ross & Subramanian (1981) Biochemistry 20, 3096-3102] proposed for ligand-protein interactions, which involves a partial immobilization of the reacting species governed by hydrophobic forces, followed by stabilization of the complex by short-range interactions. On the basis of this model, an analysis of the transition-state thermodynamics led to the conclusion that no more than half of the steroid molecular area is engaged in the binding process. 相似文献
18.
Froidevaux S Meier M Häusler M Mäcke H Beglinger C Eberle AN 《Journal of receptor and signal transduction research》1999,19(1-4):167-180
The clinical importance of somatostatin type-2 receptors (SSTR2) and the study of novel analogues of somatostatin such as OctreoScan or [Tyr3]-octreotide containing DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) as metal chelator led us to develop a methodology to monitor the expression of SSTR2 on tumours of pancreatic origin (e.g. rat AR4-2J cancer cells). Usual binding assay protocols using the commercial [125I][Tyr1]-somatostatin radioligand failed, even in the presence of a cocktail of protease inhibitors with a broad spectrum of activity, possibly due to the high susceptibility of this tracer to proteases expressed in pancreatic cells. We prepared our own radioligand [125I][Tyr2]-octreotide which was shown to be much more resistant to degradation after incubation with AR4-2J plasma membranes. As expected, the increased stability of [125I][Tyr3]-octreotide was associated with good binding to SSTR2. Addition of appropriate protease inhibitors further increased the specific binding of [125I][Tyr3]-octreotide to AR4-2J plasma membranes without affecting the stability of the tracer, suggesting that the protease inhibitors also protect the integrity of SSTR2. Optimal conditions (time, temperature, medium) were developed for a binding assay in 96-well plates using AR4-2J plasma membranes in order to make the assay suitable for high-throughput analysis. This protocol was the basis for studying the in vivo regulation of SSTR2 expression in AR4-2J cells implanted into scid mice after exposure to different compounds. 相似文献
19.
Structure and phosphatidylinositol-(3,4)-bisphosphate binding of the C-terminal PH domain of human pleckstrin 总被引:2,自引:0,他引:2
Edlich C Stier G Simon B Sattler M Muhle-Goll C 《Structure (London, England : 1993)》2005,13(2):277-286
Pleckstrin is the major target of protein kinase C (PKC) in blood platelets. Its phosphorylation triggers responses that ultimately lead to platelet activation and blood clot formation. Pleckstrin consists of three domains: a pleckstrin homology (PH) domain at both termini and a central DEP (Dishevelled, Egl-1, Pleckstrin) domain. Here, we report the solution nuclear magnetic resonance (NMR) structure of the C-terminal PH domain (C-PH) of human pleckstrin-1. We show that this PH domain binds phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) with high specificity in protein lipid overlay assays. Using NMR titration experiments and mutational analysis, residues involved in binding to PtdIns(3,4)P2 are identified. The binding site is formed by a patch of basic residues from the beta1 and beta2 strands and the beta1-beta2 loop. Since PtdIns(3,4)P2 is an important signaling molecule in platelets, our data suggest a C-PH dependent regulation of pleckstrin function in response to PtdIns(3,4)P2. 相似文献
20.
Cyclic analogues of neurotensin (NT) C-terminal fragments NT(8-13) and NT(9-13) were produced via intramolecular nucleophilic substitution of the Tyr(11) phenoxide anion on a 6-bromohexanoyl side chain substituted at position 8 or 9 and tested for NT receptor binding affinity. 相似文献