首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of tetraethylammonium ions on currents through high-conductance voltage- and Ca2+-activated K+ channels have been studied with the help of patch-clamp single-channel and whole-cell current recording on pig pancreatic acinar cells. In excised outside-out membrane patches TEA (1 to 2 mM) added to the bath solution virtually abolishes unitary current activity except at very positive membrane potentials when unitary currents corresponding to a markedly reduced conductance are observed. TEA in a lower concentration (0.2 mM) markedly reduces the open-state probability and causes some reduction of the single-channel conductance. In inside-out membrane patches bath application of TEA in concentrations up to 2 mM has no effect on single-channel currents. At a higher concentration (10 mM) slight reductions in single-channel conductance occur. In whole-cell current recording experiments TEA (1 to 2 mM) added to the bath solution completely suppresses the outward currents associated with depolarizing voltage jumps to membrane potentials of 0 mV and blocks the major part (70 to 90%) of the outward currents even at very positive membrane potentials (30 to 40 mV). In contrast TEA (2 mM) added to the cell interior (pipette solution) has no effect on the outward K+ current. Our results demonstrate that TEA in low concentrations (1 to 2 mM) acts specifically on the outside of the plasma membrane to block current through the high-conductance Ca2+- and voltage-activated K+ channels  相似文献   

2.
Voltage-gated ionic channels are known to be involved in oncogenesis. However, only a few studies describe the functional characteristics of these channels or the mechanisms by which they are involved in the proliferation and invasive processes. Breast cancer cells proliferate and migrate under the constant activation of growth factors, hormones, extracellular matrix interactions, etc. It would thus not be surprising if the activity of the ionic channels was modulated by intracellular regulation pathways such as kinases or phosphatases, which in turn can affect oncogenic properties. In the present study, we investigated some of the electrophysiological properties of the fast inward sodium current found in the breast cancer cell line MDA-MB-231 with two configurations of the patch-clamp technique. With perforated patch, a configuration which allows to keep the cytoplam intact, the mean current amplitude was lower, the relative conductance–voltage relationship was shifted to more positive potentials and the recovery from inactivation was accelerated when compared to ruptured patch, where the cytoplasm is dialysed by the intrapipette solution. There was no difference in availability–voltage (pseudo-steady-state inactivation) relationship and in time to peak of the current. These results suggest that regulation mechanisms, possibly involving kinases or phosphatases, are switched off when the cytoplasm is diluted. We propose that such a regulation can modulate the functioning of the channels even in the absence of membrane voltage changes, which in turn can affect oncogenic properties. This finding is of importance when evaluating the physiopathological role of ionic channel in cancer development.Abbreviations DMEM Dulbeccos modified Eagles medium - FBS fetal bovine serum - PP perforated patch - RP ruptured patch Presented at the Biophysical Society Meeting on Ion Channels—from structure to disease held in May 2003, Rennes, France  相似文献   

3.
4.
ATP is proposed to be a major inhibitory neurotransmitter in the gastrointestinal (GI) tract, causing hyperpolarization and smooth muscle relaxation. ATP activates small-conductance Ca2+-activated K+ channels that are involved in setting the resting membrane potential and causing inhibitory junction potentials. No reports are available examining the effects of ATP on voltage-dependent inward currents in GI smooth muscle cells. We previously reported two types of voltage-dependent inward currents in murine proximal colonic myocytes: a low-threshold voltage-activated, nonselective cation current (IVNSCC) and a relatively high-threshold voltage-activated (L-type) Ca2+ current (IL). Here we have investigated the effects of ATP on these currents. External application of ATP (1 mM) did not affect IVNSCC or IL in dialyzed cells. ATP (1 mM) increased IVNSCC and decreased IL in the perforated whole-cell configuration. UTP and UDP (1 mM) were more potent than ATP on IVNSCC. ADP decreased IL but had no effect on IVNSCC. The order of effectiveness was UTP = UDP > ATP > ADP. These effects were not blocked by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS), but the phospholipase C inhibitor U-73122 reversed the effects of ATP on IVNSCC. ATP stimulation of IVNSCC was also reversed by protein kinase C (PKC) inhibitors chelerythrine chloride or bisindolylmaleimide I. Phorbol 12,13-dibutyrate mimicked the effects of ATP. RT-PCR showed that P2Y4 is expressed by murine colonic myocytes, and this receptor is relatively insensitive to PPADS. Our data suggest that ATP activates IVNSCC and depresses IL via binding of P2Y4 receptors and stimulation of the phospholipase C/PKC pathway. inhibitory junction potentials; smooth muscle; enteric nervous system  相似文献   

5.
6.
The erythrocyte aggregation phenomenon is an important factor in capillary circulation. This phenomenon can be evaluated by a number of methods (microscopic observations, viscometry, light measurements) which cannot be applied simply to in vivo measurements. In contrast, ultrasound which propagates through soft tissues allows measurement of the mechanical properties of red blood cell (RBC) suspensions which depend on the aggregation phenomenon. We devised an apparatus in order to measure in vitro the ultrasonic backscattering intensity of RBC suspensions. First, with latex particles of different sizes, the ultrasonic backscattering coefficient has been measured in order to evaluate the apparatus response. Then, the ultrasonic backscattering coefficient of different aggregated erythrocyte suspensions has been measured and correlated with the erythrocyte sedimentation rate. Finally, the size of RBC aggregates of different suspensions has been evaluated.  相似文献   

7.
Heterologous expression of avariety of membrane proteins in Xenopus oocytes sometimesresults in the appearance of a hyperpolarization-activated inwardcurrent. The nature of this current remains incompletely understood.Some investigators have suggested that this current is a Cl current,whereas others have identified it as a nonselective cation current. Thepurpose of this investigation was to characterize this current in moredetail. The hyperpolarization-activated inward current(IIN) present in native oocytes wascomposed of a current carried at least partly by Ca and Mg underphysiological ionic conditions plus a Ca-activated Cl current. TheCa-activated Cl current was blocked by chelation of cytosolic Ca with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid.When Cl currents were blocked, the cation current could be carried byCa, Mg, or Co, but not appreciably by Ba, Mn, or Cd.IIN was stimulated by intracellularacidification. The properties of IIN were quitedifferent from those of the store-operated Ca current. Heterologousexpression of transient receptor potential-like gene product (TRPL),one of the members of the transient receptor potential family ofputative store-operated Ca channels, apparently resulted in alterationof the voltage sensitivity of the endogenous IIN.

  相似文献   

8.
Methods for applying sound pressure to membrane patches formed at the tips of patch-clamp pipettes have been developed. Artificial membrane patches were formed from diphytanoyl phosphatidylcholine using a pipette dipping technique. Natural membrane patches were excised (inside-out mode) from collagenase-treated locust muscle membrane. Curvature-electric signals were registered under both voltage clamp and current clamp conditions. The phenomenon of flexoelectricity in membranes has previously been attributed to curvature-induced polarization originating from the liquid crystalline properties of membranes. The estimated magnitude (2·10-18 C) of the flexoelectric coefficient of the artificial lipid bilayers is consistent with previous findings while that of the muscle membrane was in certain cases several times larger. The present study is the first to report on flexoelectricity in a natural membrane and raises the question of the biological significance of this phenomenon.  相似文献   

9.
Cell swelling has been shown to increase the permeability of the plasma membrane to ions such as K+, Na+, Ca2+ or Cl in many types of cells. In cardiac cells, swelling has been reported to increase Cl conductance, but whether cation-selective currents are activated by swelling is not known. Low Cl or Cl-free solutions were used to study the presence of such currents. Lowering the osmolarity of the extracellular medium from 299 to 219 mOsm resulted in cell swelling and concurrent activation of a cation-selective whole-cell current. When cell-attached patches were formed on swollen cells, opening of bursting single channel currents were observed in 18% of the patches studied. Ion substitution experiments indicated that the channel discriminated poorly among monovalent cations, and was impermeable to Cl. The channel was permeable to Ca2+. In symmetrical 140 mM K+, the current-voltage relation was linear with a single channel conductance of 36 ± 3 pS. Depolarization increased channel open probability. Interestingly, depending on the membrane patch studied, application of negative pressure to the pipette caused either an increase or a decrease in the open probability of the channel already activated by swelling. Thus, the sensitivity to tension of the swelling-activated channel was different from those of previously reported stretch-activated channels. These findings suggest that nonselective cation channels exist in rat atrial cells and may be involved in swelling-induced changes in cell function.Dr. Kim is an Established Investigator of the American Heart Association.  相似文献   

10.
11.
12.
The nature of the sustained norepinephrine-induced depolarization in brown fat cells was examined by patch-clamp techniques. Norepinephrine (NE) stimulation led to a whole cell current response consisting of two phases: a first inward current, lasting for only 1 min, and a sustained inward current, lasting as long as the adrenergic stimulation was maintained. The nature of the sustained current was here investigated. It could be induced by the alpha(1)-agonist cirazoline but not by the beta(3)-agonist CGP-12177A. Reduction of extracellular Cl(-) concentration had no effect, but omission of extracellular Ca(2+) or Na(+) totally eliminated it. When unstimulated cells were studied in the cell-attached mode, some activity of approximately 30 pS nonselective cation channels was observed. NE perfusion led to a 10-fold increase in their open probability (from approximately 0.002 to approximately 0.017), which persisted as long as the perfusion was maintained. The activation was much stronger with the alpha(1)-agonist phenylephrine than with the beta(3)-agonist CGP-12177A, and with the Ca(2+) ionophore A-23187 than with the adenylyl cyclase activator forskolin. We conclude that the sustained inward current was due to activation of approximately 30 pS nonselective cation channels via alpha(1)-adrenergic receptors and that the effect may be mediated via an increase in intracellular free Ca(2+) concentration.  相似文献   

13.
Under physiological conditions, nonselective cation (NSC) channels mediate the entry of cations into cells, the most important being Na+ and Ca2+. In contrast to the Ca(2+)-dependent signaling mechanisms, little is known about the consequences and the spatial distribution of intracellular [Na+] elevation. In this study we demonstrate that Na+ entry, during the opening of ATP-activated NSC channels, leads to an inhibition of voltage-dependent K+ currents (IK) in cromaffin-like undifferentiated PC-12 cells. The effect was dependent on the charge carrier as well as on the density of the ATP-activated current. Extracellular alkali cations (Na+, Li+) were more efficient than NH4+ in suppressing IK. Intracellular infusion of Na+ had the same effect as Na+ influx through ATP-activated NSC channels. The inhibition of IK persisted when the total ATP-induced Na+ entry was reduced by membrane depolarization, suggesting a spatial restriction of the required Na+ accumulation. Our results indicate that NSC channels influence the function of other ion channels by changing local intracellular ion concentrations.  相似文献   

14.
When the internal Na of human red cells is raised, both K influx and lactate production increase and become more sensitive to the inhibitory action of ouabain. This occurs with either glucose or purine nucleoside as substrate. Fresh whole hemolysates enriched with Na and Mg will convert intermediates above the triose phosphate dehydrogenase step to lactate at a rate which is slowed by ouabain. Intermediates beyond the phosphoglycerate kinase step (PGK) are metabolized at a very rapid rate which is not affected by ouabain. No metabolic effects of ouabain were found in ghost-free hemolysates. Hemoglobin-free ghosts were shown to have both triose phosphate dehydrogenase and PGK activity. The rate of this two-enzyme sequence was found to be a function of the ADP concentration, being maximal when ADP > 0.35 mM. Initial addition of ATP to the ghost system rendered the forward rate of the sequence sensitive to the inhibitory action of ouabain. When the sequence was run in reverse, no inhibitory effect of ouabain could be demonstrated. It is concluded that membrane PGK is a point at which the Na-K transport system can influence the metabolic rate and that this action is possibly exerted via a compartmentalized form of ADP which is an immediate substrate for the ghost PGK.  相似文献   

15.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

16.
Summary The plant alkaloid, sanguinarine, inhibits the ouabain-sensitive K–Na pump and increases the downhill, ouabain-insensitive movements of K and Na in human red cells. These two effects have different temporal and concentration dependencies and are mediated by two different chemical forms of sanguinarine. The oxidized, charged form (5×10–5 m) promptly inhibits the pump but does not affect leakage of K and Na. The reduced, uncharged form of sanguinarine causes lysis of red cells but does not inhibited the pump. Sanguinarine also increases the conductance of bilayers formed from sheep red cell lipids. The effect is produced by the uncharged but not by the charged form of sanguinarine. Bilayer conductance increases as the fourth power of sanguinarine concentration when the compound is present on both sides of the membrane and as the second power of concentration when present on only one side. Conductance also increasee-fold for each 34 mV increase in the potential difference imposed across the membrane. The results suggest that the uncharged forms of sanguinarine produce voltage-dependent channels in bilayers.  相似文献   

17.
18.
An apparent ion channel with a conductance of 295 pS is present in isolated inside-out patches of outer tegumental membrane taken from female Schistosoma mansoni. With positive voltages applied to the intracellular face of the patch, percentage open time for the channel was 0 to 50; with negative voltages applied, percentage open time was greater than 99. Step changes in applied voltage characteristically induced opening-closing activity. However, there was no maintained applied voltage at which there was a high level of sustained opening-closing activity. The 295 pS conductance was by far the most commonly occurring conductance but it appears to result from cooperativity among several channels, the unitary conductance for the channel averaging 95 pS. Alterations in the Na+ or K+ concentration ratios changed the reversal potential for this conductance but alterations in the Cl- concentration did not. From this it is concluded that this channel is selective for Na+ or K+ over Cl- and it appears to be a nonselective cation channel.  相似文献   

19.
As a special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cava (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (I Ns) in both SVC and RA cardiomyocytes. The peak density of I Ns in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase I Ns in SVC cardiomyocytes. The agonist or the antagonist of I Ns may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of I Ns between them; the agonist or the antagonist of I Ns can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. I Ns in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.  相似文献   

20.
The density distribution and cation composition of red blood cells from newborn puppies have been studied. The density distribution of red cells from a newborn puppy in a bovine serum albumin density gradient resembles a normal distribution with a peak density at a region less than that found for adult dog red cells. In two weeks the whole distribution shifts toward a more dense region, and a second cell peak appears so that the distribution becomes bimodal. This second cell peak is smaller than the original peak, and it appears at a region of lower density. In nine weeks the distribution becomes a normal one again, but the peak density corresponds to the peak density of the second cell peak which first appeared at two weeks. Evidence has been obtained to show that fetal red cells are located in the more dense cell peak and neonatal cells are in the less dense second peak. These results were obtained by labeling fetal cells with Cr51 and neonatal cells with Fe59. The analysis of the cation content of these cells shows that fetal cells contain more K and Na and have a higher K/Na ratio than adult red cells. Furthermore, neonatal cells contain considerably less cation and hemoglobin than do fetal cells. From a study of the cation and hemoglobin content of red cells appearing in various density fractions it is concluded that fetal cells lose K and Na during the first two weeks after birth. Thus, the change in the density disribution of the erythrocytes is thought to be due to two factors: (1) An increase in the density of fetal cells due to the loss of K and Na and, hence, water during the first two weeks after birth, and (2) the entry of less dense neonatal cells into the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号