首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of the GATA-6(Delta50) protein expressed in a CHO-K1 clone (tc1-17a) is stimulated in the presence of dbcAMP through proteasome without new protein synthesis [FEBS Lett. 408 (1997) 301], whereas the intrinsic GC-box-binding protein was stable. To examine the cellular mechanism responsible for this specific degradation of GATA-6(Delta50), we initially introduced the blasticidin-S deaminase gene carrying a promoter with GATA motifs that are recognized by GATA-6. The resulting cell line (tc2G2) grew in the presence of blasticidin S. However, the presence of both blasticidin S and dbcAMP was lethal due to degradation of GATA-6. Cells resistant to such lethality were isolated by chemical mutagenesis. The GATA-6(Delta50) in these resistant cells was stable in the presence of dbcAMP in contrast to that in the parent tc2G2 cells, as determined by gel-mobility shift analysis and Western blotting. These clones could be beneficial for identification and characterization of the components participating in the signaling pathway for both protein degradation and cAMP-dependent biological processes.  相似文献   

2.
Cyclic AMP-dependent proteolysis of GATA-6(Delta50) was characterized using inhibitors for intracellular signaling pathways. Among these kinase inhibitors, only H-89 and K252a inhibited the proteolysis induced by dbcAMP, a membrane permeable cAMP analogue, others such as PD98059, SB203580, calphostine C, PP1, and KN-93 did not do so. These results suggest that A-kinase, but not C-kinase, MEK, P38 MAP-kinases or Src kinase, could participate in the observed phenomenon. We further demonstrated that an inhibitor for ubiquitin isopeptidase (Delta12-PGJ2) inhibited the degradation of GATA-6(Delta50) in the presence of dbcAMP, suggesting that the cAMP-dependent proteolysis could be mediated through the ubiquitin-proteasome pathway, although proteasome activity did not change significantly during dbcAMP treatment. The full-length GATA-6 was also responsive to the induced degradation. Furthermore, mutation of a potential phosphorylation site (Ser-290-->Ala) for A- and C-kinases, and deletion of the PEST sequence of GATA-6 did not abolish the degradation. All these results suggest that cellular factor(s) may play a crucial role in mediating the activation of the cAMP-dependent process.  相似文献   

3.
Chinese Hamster Ovary fibroblasts (CHO-K1) have shown different protein contents when undergoing differentiation by 3',5'-cyclic adenosine monophosphate (cAMP), which is known to induce reverse transformation (RT) from malignancy to fibroblast-like characteristics. The mass spectrometry (MS) investigation here reported about the behavior of CHO-K1 cells before and after exposure to cAMP reveals a change in the composition of nuclear proteins associated to an inhibition of the protein expression. Possible implications of this finding on the control of cell reverse transformation are discussed.  相似文献   

4.
Ribosomal S6 kinase 2 (S6K2) is one of the kinases regulated by the mammalian target of rapamycin (mTOR) signaling pathway. Although it has been identified as a kinase homologous to S6K1, evidence suggests that the two kinases have non-overlapping functions, and the biological function of S6K2 still remains unknown. In order to identify the cell cycle stage(s) during which S6K2 plays a role, we assessed changes in the catalytic activity of S6K2 throughout the cell cycle. Our data show that S6K2 is active throughout the cell cycle with higher activity in G2 and M phases. We also show that S6K1 activity peaks sharply during M phase. Our data suggest that S6K1 and S6K2 likely play yet-unknown roles in G2 and M phases.  相似文献   

5.
Inside-out vesicles from lymphocyte plasma membrane were phosphorylated in the presence of [gamma -32P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase stimulated both membrane protein and membrane lipid phosphorylation, indicating the presence of a phosphorylation cascade. The phosphorylated membrane lipids were analyzed by thin-layer chromatography. Increase of 32P-labelling stimulated by the cyclic AMP-dependent protein kinase was found exclusively in polyphosphoinositides.  相似文献   

6.
7.
Identification of S6K2 as a centrosome-located kinase   总被引:1,自引:0,他引:1  
Ribosomal S6 kinase 2 (S6K2) acts downstream of the mammalian target of rapamycin (mTOR). Here, we show that some S6K2 localize at the centrosome throughout the cell cycle. S6K2 is found in the pericentriolar area of the centrosome. S6K2 centrosomal localization is unaffected by serum withdrawal or treatment with rapamycin, wortmannin, U0126, or phorbol-12-myristate-13-acetate (PMA). Unlike S6K2, S6 kinase 1 (S6K1) does not localize at the centrosome, suggesting the two kinases may also have nonoverlapping functions. Our data suggest that centrosomal S6K2 may have a role in the phosphoinositide-3-kinase (PI3K)/Akt/mTOR signaling pathway that has also been detected in the centrosome.  相似文献   

8.
9.
Ceramide is an important constituent of stratum corneum lipids, which act as both physical barriers and signal modulators. We synthesized several ceramide derivatives and investigated their effects on keratinocyte differentiation. RT-PCR and Western blotting showed that the novel synthetic ceramide derivatives K6PC-4 [N-(2,3-dihydroxypropyl)-2-hexyl-3-oxo-decanamide], K6PC-5, [N-(1,3-dihydroxypropyl-2-hexyl-3-oxo-decanamide] and K6PC-9 (N-ethanol-2-hexyl-3-oxo-decanamide) [corrected] These ceramide derivatives elicited a rapid transient increase in intracellular calcium levels, which were measured using laser scanning confocal microscopy. In addition, K6PC-4, K6PC-5, and K6PC-9 stimulated the phosphorylation of p42/44 extracellular signal-regulated kinase and c-Jun N-terminal kinase. In a reconstituted epidermis model, K6PC-4, K6PC-5, and K6PC-9 significantly increased keratin 1 expression in the suprabasal layer. These results indicate that these novel synthetic ceramide derivatives have the potential to promote keratinocyte differentiation, suggesting that the lipid molecules are applicable for treating skin diseases involving abnormal keratinocyte differentiation.  相似文献   

10.
Glial fibrillary acidic protein (GFAP) is expressed upon cAMP-mediated induction of differentiation of glial progenitor cells into type II astrocytes. The protein is regulated by hormones, growth factors and cytokines but the signal transduction pathways involved in the regulation of GFAP expression are largely unknown. Specific protein kinase inhibitors were used to study their effect on the expression of GFAP in rat C6 glioma cells. Herbimycin A, a selective protein tyrosine kinase inhibitor, reduced GFAP mRNA and protein expression upon cAMP analog or beta-adrenergic receptor-mediated induction of differentiation. The latter inhibitor attenuated the elevation of cAMP by adenylate cyclase and abolished the activity of phosphatidylinositol 3-kinase (PI 3-K). These data indicate that GFAP expression is regulated by protein tyrosine phosphorylations, modulating the cAMP concentration and PI 3-K activity in C6 glioma cells.  相似文献   

11.
In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3′,5′-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN–optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections that combined rCNTF with both agonists were significantly less effective. The results are discussed in relation to previous CPT-cAMP studies on RGCs, and we also consider the need to modulate cAMP levels in order to obtain the most functionally effective regenerative response after CNS trauma.This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

12.
13.
In Drosophila, Black cells (Bc) encodes a Prophenoloxidase and is expressed late in the maturation of crystal cells, which are blood cells involved in wound healing and immune encapsulation. Enhancer analysis of Bc revealed a 1,025-bp upstream sequence that regulates gene expression in a crystal cell exclusive pattern. Expression of this fragment is altered by mutations in the GATA family serpent (srp) and RUNX family lozenge (lz) genes; Srp and Lz are required for crystal cell specification. Deletional analysis uncovered a 330-bp crystal cell-specific sequence, which contains two GATA and three Lz binding sites. Mutational analysis revealed that both GATA sites are necessary, but not sufficient for crystal cell expression. However, one of the Lz sites is essential for crystal cell expression. Thus, Srp and Lz do not just specify the crystal cell lineage, but also regulate the later differentiation of these cells. Additionally, we now have a sensitive tool for marking crystal cells in live animals.  相似文献   

14.
The rates of intracellular protein degradation, of identically labelled populations of proteins, were compared in hepatocytes cultured at 37 degrees (on an adsorbed collagen layer) and in cells preserved on gelatin gels at 10 degrees C. The half-lives of the long-lived proteins were 35.4+/-8.6 h (N=4) and 692.9+/-216.9 h (N=4) respectively. Proteolysis was substantially decreased at 10 degrees C but the rate of decrease remained constant. Hepatocytes rapidly removed resorufin from the culture medium. The resorufin was not being conjugated or accumulated within the cells. Dicumarol, a potent inhibitor of quinone oxidoreductase, at high concentration (500 microm ) caused only a 72% decrease in the utilization of resorufin. The microsomal detoxifying enzyme, cytochrome P-450 1A1 remained at a constant level in the preserved hepatocyte monolayers. The results of this study strongly favour storing hepatocytes at 10 degrees C rather than at 4 degrees or 37 degrees C.  相似文献   

15.
16.
In fission yeast, overexpression of the replication initiator protein Cdc18p induces re-replication, a phenotype characterized by continuous DNA synthesis in the absence of cell division. In contrast, overexpression of Cdc6p, the budding yeast homolog of Cdc18p, does not cause re-replication in S. cerevisiae. However, we have found that Cdc6p has the ability to induce re-replication in fission yeast. Cdc6p cannot functionally replace Cdc18p, but instead interferes with the proteolysis of both Cdc18p and Rum1p, the inhibitor of the protein kinase Cdc2p. This activity of Cdc6p is entirely contained within a short N-terminal peptide, which forms a tight complex with Cdc2p and the F-box/WD-repeat protein Sud1p/Pop2p, a component of the SCFPop ubiquitin ligase in fission yeast. These interactions are mediated by two distinct regions within the N-terminal region of Cdc6p and depend on the integrity of its Cdc2p phosphorylation sites. The data suggest that disruption of re-replication control by overexpression of Cdc6p in fission yeast is a consequence of sequestration of Cdc2p and Pop2p, two factors involved in the negative regulation of Rum1p, Cdc18p and potentially other replication proteins. Received: 29 April 1999 / Accepted: 27 June 1999  相似文献   

17.
We have used the patch-clamp technique to study the effects of changing extracellular ATP concentration on the activity of the small-conductance potassium channel (SK) on the apical membrane of the mouse cortical collecting duct. In cell-attached patches, the channel conductance and kinetics were similar to its rat homologue. Addition of ATP to the bathing solution of split-open single cortical collecting ducts inhibited SK activity. The inhibition of the channel by ATP was reversible, concentration dependent (K(i) = 64 microM), and could be completely prevented by pretreatment with suramin, a specific purinergic receptor (P(2)) blocker. Ranking of the inhibitory potency of several nucleotides showed strong inhibition by ATP, UTP, and ATP-gamma-S, whereas alpha, beta-Me ATP, and 2-Mes ATP failed to affect channel activity. This nucleotide sensitivity is consistent with P(2)Y(2) purinergic receptors mediating the inhibition of SK by ATP. Single channel analysis further demonstrated that the inhibitory effects of ATP could be elicited through activation of apical receptors. Moreover, the observation that fluoride mimicked the inhibitory action of ATP suggests the activation of G proteins during purinergic receptor stimulation. Channel inhibition by ATP was not affected by blocking phospholipase C and protein kinase C. However, whereas cAMP prevented channel blocking by ATP, blocking protein kinase A failed to abolish the inhibitory effects of ATP. The reduction of K channel activity by ATP could be prevented by okadaic acid, an inhibitor of protein phosphatases, and KT5823, an agent that blocks protein kinase G. Moreover, the effect of ATP was mimicked by cGMP and blocked by L-NAME (N(G)-nitro-l-arginine methyl ester). We conclude that the inhibitory effect of ATP on the apical K channel is mediated by stimulation of P(2)Y(2) receptors and results from increasing dephosphorylation by enhancing PKG-sensitive phosphatase activity.  相似文献   

18.
Epac and PKA: a tale of two intracellular cAMP receptors   总被引:1,自引:0,他引:1  
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by cAMP (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function.  相似文献   

19.
Protein kinase D1 (PKD1) is increasingly implicated in multiple biological and molecular events that regulate the proliferation or invasiveness in several cancers. However, little is known about the expression and functions of PKD1 in non-small cell lung cancer (NSCLC). In the present study, 34 pairs of human NSCLC and matched normal bronchiolar epitheliums were enrolled and evaluated for PKD1 expression by quantitative real-time PCR. We showed that PKD1 was downregulated in 26 of 34 cancer tissues in comparison with matched normal epitheliums. Moreover, patients with venous invasion or lymph node metastasis showed significant lower expression of PKD1. Exposure of NSCLC A549 and H520 cells to the PKD family inhibitor kb NB 142-70(Kb), at concentrations that inhibited PKD1 activation, strikingly potentiated S6K1 phosphorylation at Thr389 and S6 phosphorylation at Ser235/236 in response to phorbol ester (PMA). Knockdown of PKD1 with siRNAs strikingly enhanced S6K1 phosphorylation whereas constitutively active PKD1 resulted in the S6K1 activity inhibition. Furthermore, the PI3K inhibitors LY294002, BKM120 and MEK inhibitors U0126, PD0325901 blocked the enhanced S6K1 activity induced by Kb. Collectively, our results identify decreased expression of the PKD1 as a marker for NSCLC and the loss of PKD1 expression increases the malignant potential of NSCLC cells. This may be due to the function of PKD1 as a negative regulator of mTORC1-S6K1. Our results suggest that re-expression or activation of PKD1 might serve as a potential therapeutic target for NSCLC treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号