首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which extracellular ATP stimulates insulin secretion was investigated in RINm5F cells. ATP depolarized the cells as demonstrated both by using the patch-clamp technique and a fluorescent probe. The depolarization is due to closure of ATP-sensitive K+ channels as shown directly in outside-out membrane patches. ATP also raised cytosolic Ca2+ [( Ca2+]i). At the single cell level the latency of the [Ca2+]i response was inversely related to ATP concentration. The [Ca2+]i rise is due both to inositol trisphosphate mediated Ca2+ mobilization and to Ca2+ influx. The former component, as well as inositol trisphosphate generation, were inhibited by phorbol myristate acetate which uncouples agonist receptors from phospholipase C. This manoeuvre did not block Ca2+ influx or membrane depolarization. Diazoxide, which opens ATP-sensitive K+ channels, attenuated membrane depolarization and part of the Ca2+ influx stimulated by ATP. However, the main Ca2+ influx component was unaffected by L-type channel blockers, suggesting the activation of other Ca2+ conductance pathways. ATP increased the rate of insulin secretion by more than 12-fold but the effect was transient. Prolonged exposure to EGTA dissociated the [Ca2+]i rise from ATP-induced insulin secretion, since the former was abolished and the latter only decreased by about 60%. In contrast, vasopressin-evoked insulin secretion was more sensitive to Ca2+ removal than the accompanying [Ca2+]i rise. Inhibition of phospholipase C stimulation by phorbol myristate acetate abrogated vasopressin but only reduced ATP-induced insulin secretion by 34%. These results suggest that ATP stimulates insulin release by both phospholipase C dependent and distinct mechanisms. The Ca2+)-independent component of insulin secretion points to a direct triggering of exocytosis by ATP.  相似文献   

2.
Magnesium (Mg2+) is an abundant intracellular cation that participates in the regulation of the intracellular concentration of ATP. In this study, we examined the relationship between insulin secretion and intracellular free Mg2+ ([Mg2+]i) in a rat-insulinoma cell line (RIN m5F), using a fluorescent dye (Mag-fura-2). KCI, forskolin, and D-glyceraldehyde increased [Mg2+]i and insulin secretion from RIN m5F cells in a dose-dependent fashion. Verapamil, a voltage-dependent Ca2+ channel blocker, inhibited the increase of [Mg2+]i that was evoked by KCI, forskolin, and D-glyceraldehyde. In a Mg(2+)-free buffer, these agents failed to cause an elevation in [Mg2+]i; however, the insulin response to KCI and forskolin was enhanced, compared with that in the presence of Mg2+ (1.25 mM). Our findings suggest that [Mg2+]i is dependent upon extracellular Mg2+, and the influx through the voltage-dependent Ca2+ channel. Mg2+ may competitively inhibit the voltage-dependent Ca2+ channel, which is known to play a role in insulin secretion. An absence of Mg2+ in the extracellular space may result in enhanced insulin secretion. [Mg2+]i may play a role in insulin secretion from RIN m5F cells.  相似文献   

3.
High-altitude long-term hypoxia (LTH) alters cerebral vascular contractile and relaxation responses in both fetus and adult. We tested the hypotheses that LTH-mediated vascular responses were secondary to altered K+ channel function and that in the fetus these responses differ from those of the adult. In middle cerebral arteries (MCA) from both nonpregnant adult and fetal (approximately 140 days gestation) sheep, which were either acclimatized to high altitude (3,820 m) or sea-level controls, we measured norepinephrine (NE)-induced contractions and intracellular Ca2+ concentration ([Ca2+]i) simultaneously, in the presence or absence of different K+ channel openers or blockers. In adult MCA, LTH was associated with approximately 20% decrease in NE-induced tension and [Ca2+]i, with a significant increase in Ca2+ sensitivity. In contrast, in fetal MCA, LTH failed to affect significantly NE-induced contraction or [Ca2+]i but significantly decreased the ATP-sensitive K+ (K(ATP)) channel and Ca2+-activated K+ (K(Ca)) channel-mediated relaxation. The significant effect of K(ATP) and K(Ca) channel activators on the relaxation responses and the fact that K+ channels play a key role in myogenic tone support the hypotheses that K+ channels play an important role in hypoxia-mediated responses. These results also support the hypothesis of significant developmental differences with maturation from fetus to adult.  相似文献   

4.
Role of GPR40 in fatty acid action on the beta cell line INS-1E   总被引:7,自引:0,他引:7  
GPR40 is a G protein-coupled receptor expressed preferentially in beta cells, that has been implicated in mediating free fatty acid-stimulated insulin release. GPR40 RNAi impaired the ability of palmitic acid (PA) to increase both insulin secretion and intracellular calcium ([Ca2+]i). The PA-dependent [Ca2+]i increase was attenuated by inhibitors of Galphaq, PLC, and SERCA. Thus GPR40 activates the Galphaq pathway, leading to release of Ca2+ from the ER. Yet the GPR40-dependent [Ca2+]i rise was dependent on extracellular Ca2+ and elevated glucose, and was blocked by inhibition of L-type calcium channels (LTCC) or opening of the K(ATP) channel; this suggests that GPR40 promotes Ca2+ influx through up-regulation of LTCC pre-activated by glucose and membrane depolarization. Taken together, the data indicate that GPR40 mediates the increase in [Ca2+]i and insulin secretion through the Galphaq-PLC pathway, resulting in release of Ca2+ from the ER and leading to up-regulation of Ca2+ influx via LTCC.  相似文献   

5.
Protein phosphorylation and cytosolic-free [Ca2+] ([Ca2+]i) contribute to signalling cascades evoked by the water-stress hormone abscisic acid (ABA) that lead to stomatal closure in higher-plant leaves. ABA activates an inward-rectifying Ca2+ channel at the plasma membrane of stomatal guard cells, promoting Ca2+ entry by shifting the voltage-sensitivity of the channels. Because many of these effects could be mediated by kinase/phosphatase action at the membrane, we examined a role for protein (de-)phosphorylation in plasma membrane patches from Vicia guard cells. Ca2+ channel activity decayed rapidly in excised patches, and recovered on adding ATP (K1/2, 1.3 +/- 0.7 mm) but not the non-hydrolyzable analog ATPgammaS. ABA activation of the channel required the presence of ATP and like ABA, the 1/2 A-type protein phosphatase antagonists okadaic acid (OA) and calyculin A (CA) enhanced Ca2+ channel activity by increasing the open probability and number of active channels. Neither ATP nor the antagonists affected the mean open lifetime of the channel, suggesting an action through changes in closed lifetime distributions. Like ABA, OA and CA shifted the voltage-sensitivities of the Ca2+ current and [Ca2+]i increases in intact guard cells towards positive voltages. OA and CA also augmented the [Ca2+]i rise evoked by hyperpolarization and delayed its recovery. These results demonstrate a membrane-delimited interaction between 1/2 A-type protein phosphatase(s) and the Ca2+ channel or associated proteins, and they are consistent with a role for protein (de-)phosphorylation in ABA signalling mediated directly through Ca2+ channel gating that leads to [Ca2+]i increases in the guard cells.  相似文献   

6.
The action of exogenous ATP on cytoplasmic free Ca2+ ([Ca2+]i) was studied in insulin secreting cells using fura-2. Stimulation of clonal pancreatic beta-cells (HIT) with ATP (range 2-20 microM) evoked a sustained elevation in [Ca2+]i. ATP selectively promoted Ca2+ influx and not Ca2+ mobilization since (1) the effect required external Ca1+ and (2) was observed in cells in which internal stores were depleted with ionomycin (3) the rate of Mn2+ influx, measured as the quenching of the fura-2 signal, was accelerated by ATP. The action of ATP was unaffected by the voltage-sensitive Ca2+ channel blockers nifedipine and verapamil as well as by a depolarizing concentration of K+. The effect on [Ca2+]i was highly specific for ATP since AMP, ADP, adenosine 5'-[gamma-thio]triphosphate, adenosine 5'-[beta, gamma-methylene]triphosphate, GTP and adenosine were ineffective. In normal pancreatic islet cells, both exogenous ATP (range 0.2-2 microM) and ADP induced a transient Ca2+ elevation that did not require external Ca2+. The nucleotide specificity of the effect on [Ca2+]i suggests that ATP activates P2 gamma purinergic receptors in normal beta-cells. Thus, ATP evokes a Ca2+ signal in clonal HIT cells and normal islet cells by different transducing systems involving distinct purinoreceptors. A novel mechanism for increasing [Ca2+]i by extracellular ATP is reported in HIT cells, since the nucleotide specificity and the selective activation of Ca2+ influx without mobilization of internal Ca2+ stores cannot be explained by mechanisms already described in other cell systems.  相似文献   

7.
We characterized ATP-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current in cultured rat myenteric neurons using ratiometric Ca2+ imaging with fura-2 and the whole cell patch-clamp technique, respectively. Neuronal cells were functionally identified by [Ca2+]i responses to high K+ and nicotine, which occurred only in cells positive for neuron-specific protein gene product 9.5 immunoreactivity. ATP evoked a dose-dependent increase of [Ca2+]i that was greatly decreased by the removal of extracellular Ca2+ concentration ([Ca2+]o). The amplitude of the [Ca2+]i response to ATP was reduced by half in the presence of voltage-dependent Ca2+ channel blockers. In [Ca2+]o-free solution, ATP produced a small transient rise in [Ca2+]i similar to that induced by P2Y agonists. At -60 mV, ATP evoked a slowly inactivating inward current that was suppressed by the removal of extracellular Na+ concentration. The current-voltage relation for ATP showed an inward rectification with the reversal potential of about 0 mV. The apparent rank order of potency for the purinoceptor agonist-induced increases of [Ca2+]i was ATP > or = adenosine 5'-O-3-triphosphate > or = CTP > or = 2-methylthio-ATP > benzoylbenzoyl-ATP. A similar potency order was obtained with current responses to these agonists. P2 antagonists inhibited inward currents induced by ATP. Ca2+ and Mg2+ suppressed the ATP-induced current, and Zn2+, Cu2+, and protons potentiated it. RT-PCR and immunocytochemical studies showed the expression of P2X2 receptors in cultured rat myenteric neurons. These results suggest that ATP mainly activates ionotropic P2X2 receptors, resulting in a [Ca2+]i increase dependent on [Ca2+]o in rat myenteric neurons. A small part of the ATP-induced [Ca2+]i increase may be also mediated via a P2Y receptor-related mechanism.  相似文献   

8.
Glucose-induced insulin secretion by pancreatic beta-cells depends on membrane depolarization and [Ca2+]i increase. We correlated voltage- and current-clamp recordings, [Ca2+]i measurements, and insulin reverse hemolytic plaque assay to analyze the activity of a thapsigargin-sensitive cationic channel that can be important for membrane depolarization in single rat pancreatic beta-cells. We demonstrate the presence of a thapsigargin-sensitive cationic current, which is mainly carried by Na+. Moreover, in basal glucose concentration (5.6 mM), thapsigargin depolarizes the plasma membrane, producing electrical activity and increasing [Ca2+]i. The latter is prevented by nifedipine, indicating that Ca2+ enters the cell through L-type Ca2+ channels, which are activated by membrane depolarization. Thapsigargin also increased insulin secretion by increasing the percentage of cells secreting insulin and amplifying hormone secretion by individual beta-cells. Nifedipine blocked the increase completely in 5.6 mM glucose and partially in 15.6 mM glucose. We conclude that thapsigargin potentiates a cationic current that depolarizes the cell membrane. This, in turn, increases Ca2+ entry through L-type Ca2+ channels promoting insulin secretion.  相似文献   

9.
Oxygen-free radicals are thought to be a major cause of beta-cell dysfunction in diabetic animals induced by alloxan or streptozotocin. We evaluated the effect of H2O2 on cytosolic Ca2+ concentration ([Ca2+]i) and the activity of ATP-sensitive potassium (K+ATP) channels in isolated rat pancreatic beta-cells using microfluorometry and patch clamp techniques. Exposure to 0.1 mM H2O2 in the presence of 2.8 mM glucose increased [Ca2+]i from 114.3+/-15.4 nM to 531.1+/-71.9 nM (n=6) and also increased frequency of K+ATP channel openings. The intensity of NAD(P)H autofluorescence was conversely reduced, suggesting that H2O2 inhibited the cellular metabolism. These three types of cellular parameters were reversed to the control level on washout of H2O2, followed by a transient increase in [Ca2+]i, the transient inhibition of K+ATP channels associated with action currents and increase of the NAD(P)H intensity with an overshoot. In the absence of external Ca2+, 0.1 mM H2O2 increased [Ca2+]i from 88.8+/-7.2 nM to 134.6+/-8.3 nM. Magnitude of [Ca2+]i increase induced by 0.1 mM H2O2 was decreased after treatment of cells with 0.5 mM thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pump (45.8+/-4.9 nM vs 15.0+/-4.8 nM). Small increase in [Ca2+]i in response to an increase of external Ca2+ from zero to 2 mM was further facilitated by 0.1 mM H2O2 (330.5+/-122.7 nM). We concluded that H2O2 not only activates K+ATP channels in association with metabolic inhibition, but also increases partly the Ca2+ permeability of the thapsigargin-sensitive intracellular stores and of the plasma membrane in pancreatic beta-cells.  相似文献   

10.
Effects of extracellularly applied ATP (added as disodium salt) on stimulus-secretion coupling were investigated in clonal insulin-producing RINm5F cells. Cytoplasmic free Ca2+ concentration [( Ca2+]i), electrical activity, membrane potential, formation of InsP3 and insulin release were measured. Addition of ATP in a Ca2(+)-containing medium promoted a rapid rise in [Ca2+]i, which was followed by a slow decline towards the basal level. In a Ca2(+)-free medium, the ATP-induced increase in [Ca2+]i was smaller, but still enough to elicit insulin secretion. Upon normalization of the extracellular Ca2+ concentration, the response to ATP recovered instantaneously. The presence of glucose in the incubation medium was a prerequisite to obtain a pronounced effect of ATP in the absence of extracellular Ca2+. However, glucose did not enhance the response to ATP in a Ca2(+)-containing medium. The effect of ATP was dose-dependent, with a clearly detectable increase in [Ca2+]i at 1 microM and a maximal response being obtained at 200 microM-ATP. The response to ATP was unaffected by activating adenylate cyclase by forskolin, but was abolished by 10 nM of the phorbol ester phorbol 12-myristate 13-acetate. The effects of ATP on [Ca2+]i could not be accounted for by a generalized increase in plasma-membrane permeability, as evident from the failure of the nucleotide to increase the fluorescence of the nuclear stain ethidium bromide. After stimulation with ATP there was an increase in membrane potential, in both the absence and the presence of extracellular Ca2+. Blockage of the voltage-activated Ca2+ channals with D-600, in a Ca2(+)-containing medium, decreased the effect of ATP on [Ca2+]i slightly. Patch-clamp measurements using the cell-attached patch configuration revealed that the RINm5F cells produce spontaneous action potentials, the frequency of which increased markedly on addition of ATP. Whole-cell recordings demonstrated that the increase in spike frequency was not associated with the development of an inward current, but was rather accountable for by a decrease in the activity of the ATP-regulated K+ channels. Addition of 200 microM-ATP stimulated phospholipase C activity, as evident from the formation of InsP3, both in the absence and in the presence of extracellular Ca2+. Thus in the absence of extracellular Ca2+ the stimulatory effect of ATP on insulin release can be explained by InsP3-induced mobilization of intracellularly bound Ca2+. Hence, in the RINm5F cells extracellular ATP acts in a manner similar to other Ca2(+)-mobilizing agents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The precise regulation of the Ca2+ concentration in the endoplasmic reticulum ([Ca2+]er) is important for protein processing and signal transduction. In the pancreatic beta-cell, dysregulation of [Ca2+]er may cause impaired insulin secretion. The Ca2+-sensitive photoprotein aequorin mutated to lower its Ca2+ affinity was stably expressed in the endoplasmic reticulum (ER) of rat insulinoma INS-1 cells. The steady state [Ca2+]er was 267 +/- 9 microM. Both the Ca2+-ATPase inhibitor cyclopiazonic acid and 4-chloro-m-cresol, an activator of ryanodine receptors, caused an almost complete emptying of ER Ca2+. The inositol 1,4,5-trisphosphate generating agonists, carbachol, and ATP, reduced [Ca2+]er by 20-25%. Insulin secretagogues that raise cytosolic [Ca2+] by membrane depolarization increased [Ca2+]er in the potency order K+ > glucose > leucine, paralleling their actions in the cytosolic compartment. Glucose, which augmented [Ca2+]er by about 25%, potentiated the Ca2+-mobilizing effect of carbachol, explaining the corresponding observation in cytosolic [Ca2+]. The filling of ER Ca2+ by glucose is not directly mediated by ATP production as shown by the continuous monitoring of cytosolic ATP in luciferase expressing cells. Both glucose and K+ increase [Ca2+]er, but only the former generated whereas the latter consumed ATP. Nonetheless, drastic lowering of cellular ATP with a mitochondrial uncoupler resulted in a marked decrease in [Ca2+]er, emphasizing the requirement for mitochondrially derived ATP above a critical threshold concentration. Using alpha-toxin permeabilized cells in the presence of ATP, glucose 6-phosphate did not change [Ca2+]er, invalidating the hypothesis that glucose acts through this metabolite. Therefore, insulin secretagogues that primarily stimulate Ca2+ influx, elevate [Ca2+]er to ensure beta-cell homeostasis.  相似文献   

12.
P B Carroll  M X Li  E Rojas  I Atwater 《FEBS letters》1988,234(1):208-212
The effects of bicarbonate buffer (HCO3-/CO2) on the activity of the two K+ channels proposed by some to control the pancreatic B-cell membrane response to glucose were studied. Single K+-channel records from membrane patches of cultured B-cells dissociated from adult rat islets exposed to a glucose- and bicarbonate-free medium (Na-Hepes in place of bicarbonate) exhibit the activity of both the ATP-sensitive as well as the [Ca2+]i-activated K+ channels. However, in the presence of bicarbonate-buffered Krebs solution, the activity of the ATP-sensitive K+ channel is inhibited leaving the activity of the K+ channel activated by intracellular [Ca2+]i unaffected. In the absence of bicarbonate (Hepes/NaOH in place of bicarbonate), lowering the external pH from 7.4 to 7.0 also has differential effects on the two K+ channels. While the K+ channel sensitive to ATP is inhibited, the K+ channel activated by a rise in [Ca2+]i is not affected. To determine whether the response of the B-cell in culture to bicarbonate is also present when the B-cell is functioning within the islet syncytium, the effects of bicarbonate removal on membrane potential of B-cells from intact mouse islets were compared. These studies showed that glucose-evoked electrical activity is also blocked in bicarbonate-free Krebs solution. Furthermore, in the absence of bicarbonate and presence of glucose (11 mM), electrical activity was recovered by lowering the pHo from 7.4 to 7.0. The ATP-sensitive K+-channel activity is greatly reduced by physiologically buffered solutions in pancreatic B-cells in culture. The most likely explanation for the bicarbonate effects is that they are mediated by cytosolic pH changes. Removal of bicarbonate (keeping the external pH at 7.4 with Hepes/NaOH as buffer) would increase the pHi. Since the activity of the [Ca2+]i-dependent K+ channels is not affected by the removal of the bicarbonate buffer, our patch-clamp data in cultured B-cells indicate an involvement of [Ca2+]i-activated K+ channels in the control of the membrane potential. For the B-cell in the islet, we propose that the burst pattern of electrical activity (Ca2+ entry) is controlled, at least in part, by the [Ca2+]i-activated K+ channel.  相似文献   

13.
To study why pancreatic beta-cells prefer to burst as a multi-cellular complex, we have formulated a stochastic model for bursting clusters of excitable cells. Our model incorporated a delayed rectifier K+ channel, a fast voltage-gated Ca2+ channel, and a slow Cai-blockable Ca2+ channel. The fraction of ATP-sensitive K+ channels that may still be active in the bursting regime was included in the model as a leak current. We then developed an efficient method for simulating an ionic current component of an excitable cell that contains several thousands of channels opening simultaneously under unclamped voltage. Single channel open-close stochastic events were incorporated into the model by use of binomially distributed random numbers. Our simulations revealed that in an isolated beta-cell [Ca2+]i oscillates with a small amplitude about a low [Ca2+]i. However, in a large cluster of tightly coupled cells, stable bursts develop, and [Ca2+]i oscillates with a larger amplitude about a higher [Ca2+]i. This may explain why single beta-cells do not burst and also do not release insulin.  相似文献   

14.
In the neurosecretory cell line PC12 the cytosolic free Ca2+ concentration, [Ca2+]i, and membrane potential were affected by both external ATP and the nonapeptide bradykinin, BK. The latter caused a rapid and large release of Ca2+ from intracellular stores (Ca2+ redistribution) and, in the presence of external Ca2+, a long lasting, but moderate Ca2+ influx, which was insensitive to dihydropyridine blockers. On the contrary, ATP evoked a [Ca2+]i rise which rapidly inactivated. At least three different mechanisms accounted for the ATP-induced increase in [Ca2+]i: less than 20% of the total response was due to intracellular Ca2+ redistribution, consistent with a small increase in inositol 1,4,5-trisphosphate level; the rest (over 80%) was equally accounted for by ATP-activated cation channels and voltage-gated Ca2+ channels. ATP and BK (the latter after K+ channel blockade) caused plasma membrane depolarization. With both agonists the inward current was carried by both Na+ and Ca2+, although the BK-activated current appeared to be more selective for Ca2+. Channels triggered by ATP and BK differed not only in their cation selectivity, but also in modulation by both [Ca2+]i and drugs such as the phorbol ester phorbol 12-myristate 13-acetate and the new antagonist of ligand-activated Ca2+ influx, SK&F 96365.  相似文献   

15.
Spatiotemporal change of the cytosolic free Ca2+ concentration ([Ca2+]i) in response to a variety of secretagogues was examined in rat pancreatoma AR-42J and AR-IP cells by microspectroflurometry and digital imaging microscopy after loading with fura-2. In the presence of external Ca2+, carbachol, CCK-OP (cholecystokinin-octapeptide), gastrin, norepinephrine or high K+ evoked a large transient increase in [Ca2+]i in AR-42J cells which declined to a sustained level before slowly declining towards the resting level. In the absence of external Ca2+, a transient increase in [Ca2+]i were evoked by all the ligands except for high K+ stimulation, which declined rapidly towards the resting level. The [Ca2+]i increase caused by carbachol and high K+ treatment was inhibited by muscarinic receptor antagonist, atropine, and by L-type Ca2+ channel blocker, nifedipine, respectively. The transient [Ca2+]i increase induced by gastrin stimulation was not blocked by Ca2+ channel blocker, lanthanum. In the AR-IP cells, which are non-differentiated pancreatoma cell line, all stimulations including high K+ treatment have failed to evoke [Ca2+]i response. These intracellular Ca2+ mobilizations in response to ligands in AR-42J cells were displayed by digital imaging microscopy. From these results we conclude that AR-42J cells has an alpha-adrenergic receptor, in addition to muscarinic acetylcholine receptor, CCK-OP receptor, gastrin receptor and voltage dependent Ca2+ channel. In marked contrast, AR-IP cells have neither any hormone receptor for the above ligands nor voltage dependent Ca2+ channel.  相似文献   

16.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

17.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

18.
《The Journal of cell biology》1990,111(6):2543-2552
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose- dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.  相似文献   

19.
Secretory granules of pancreatic β-cells contain high concentrations of Ca2+ ions that are co-released with insulin in the extracellular milieu upon activation of exocytosis. As a consequence, an increase in the extracellular Ca2+ concentration ([Ca2+]ext) in the microenvironment immediately surrounding β-cells should be expected following the exocytotic event. Using Ca2+-selective microelectrodes we show here that both high glucose and non-nutrient insulinotropic agents elicit a reversible increase of [Ca2+]ext within rat insulinoma (INS-1E) β-cells pseudoislets. The glucose-induced increases in [Ca2+]ext are blocked by pretreatment with different Ca2+ channel blockers. Physiological agonists acting as positive or negative modulators of the insulin secretion and drugs known to intersect the secretory machinery at different levels also induce [Ca2+]ext changes as predicted on the basis of their described action on insulin secretion. Finally, the glucose-induced [Ca2+]ext increase is strongly inhibited after disruption of the actin web, indicating that the dynamic [Ca2+]ext changes recorded in INS-1E pseudoislets by Ca2+-selective microelectrodes occur mainly as a consequence of exocytosis of Ca2+-rich granules. In conclusion, our data directly demonstrate that the extracellular spaces surrounding β-cells constitute a restricted domain where Ca2+ is co-released during insulin exocytosis, creating the basis for an autocrine/paracrine cell-to-cell communication system via extracellular Ca2+ sensors.  相似文献   

20.
The contractile sensitivity of smooth muscle to changes in myoplasmic [Ca2+] is dependent on the form of stimulation. Both myosin phosphorylation and force are less sensitive to increases in [Ca2+]i derived from Ca2+ entry through L-type Ca2+ channels than to increases in [Ca2+] induced by agents which release internal Ca2+ stores. We hypothesized that activation of receptor-operated channels should produce a [Ca2+]i sensitivity similar to that induced by opening L channels. Aequorin-estimated myoplasmic [Ca2+] and myosin light chain phosphorylation were measured in swine carotid media tissues stimulated with ATP, an activator of the only known receptor-operated cation channel in smooth muscle. ATP, via activation of a P2x purinergic receptor, induced large, transient increases in [Ca2+]i, yet only small transient elevations in phosphorylation or force. Rapid desensitization to ATP was partially, but not completely, caused by hydrolysis of ATP into adenosine since 1) alpha-beta-methylene ATP (a poorly hydrolyzable analog of ATP) produced larger, yet still transient increases in [Ca2+]i, phosphorylation, and force; 2) BW A1433U, a P1 (adenosine) receptor antagonist, enhanced ATP-induced contractions; and 3) ATP, but not alpha-beta-methylene ATP increased bath [adenosine]. The [Ca2+]i sensitivity of phosphorylation during P2x receptor activation was similar to that observed with KCl-depolarization-induced opening of L channels, supporting the hypothesis that transplasmalemmal Ca2+ influx produces less phosphorylation and force than mobilization of intracellular Ca2+ stores. Cumulative additions of higher alpha-beta-methylene ATP concentrations induced repeated transient contractions, indicative of an unusual form of receptor desensitization which could be explained if the affinity of the P2x receptor for ATP, but not the receptor number were rapidly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号