首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of various electron transport inhibitors upon the rates of reduction NO 3 - , dimethyl sulphoxide (DMSO) and N2O in anaerobic suspensions of Rhodobacter capsulatus have been studied. A new method for the determination of the rates of reduction of these auxiliary oxidants in intact cells is presented, based on the proportionality observed between the concentration of oxidant and the duration of the electrochromic carotenoid bandshift. For NO 3 - and N2O good agreement was found between rates of reduction determined using electrodes and those determined by the electrochromic method.Myxothiazol and antimycin A had no effect on the rates of reduction of NO 3 - and DMSO suggesting that the cytochrome b/c 1complex is not involved in electron transport to these oxidants. 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) inhibited at two sites, one within the cytochrome b/c 1complex and the other on the nitrate reducing pathay, but had no effect on electron transport to N2O or DMSO. In both intact cells and cell free extracts, HOQNO had no effect on the nitrate dependent re-oxidation of reduced methylviologen (MVH2), a direct electron donor to nitrate reductase.Our data are consistent with a branch point for the auxiliary electron transport pathways at the level of the ubiquinone pool.Non-standard abbreviations HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - TMAO trimethylamine-N-oxide - DMSO dimethyl-sulphoxide - membrane potential - MVH2 reduced methyl viologen  相似文献   

2.
Proton translocation during the reduction of NO 3 - , NO 2 - , N2O and O2, with endogenous substrates, in washed cells of Rhodopseudomonas sphaeroides f. denitrificans was investigated by an oxidant pulse method. On adding NO 2 - to washed cells, anaerobically in the dark, an alkalinization occurred in the reaction mixture followed by acidification. When NO 3 - , N2O or O2 was added to cells in the dark or with these compounds and NO 2 - in light an acidification only was observed. Proton translocation was inhibited by carbonyl cyanide-m-chlorophenyl hydrazone.Valinomycin treated cells produced acid in response to the addition of either NO 3 - , NO 2 - , N2O or O2. The proton extrusion stoichiometry ( ratios) in illuminated cells were as follows: NO 3 - 0.5N2, 4.82; NO 2 - 0.5N2, 5.43; N2ON2, 6.20; and O2H2O, 6.43. In the dark the comparable values were 3.99, 4.10, 4.17 and 3.95. Thus, illuminated cells produced higher values than those in the dark, indicating a close link between photosynthesis and denitrification in the generation of proton gradients across the bacterial cell membranes.When reduced benzyl viologen was the electron donor in the presence of 1 mM N-ethylmaleimide and 0.5 mM 2-n-heptyl-4-hydroxyquinoline-N-oxide in the dark, the addition of either NO 3 - , NO 2 - or N2O to washed cells resulted in a rapid alkalinization of the reaction mixture. The stoichiometries for proton consumption, ratios without a permeant ion were NO 3 - NO 2 - ,-1.95; NO 2 - 0.5 N2O,-3.03 and N2ON2,-2.02. The data indicate that these reductions occur on the periplasmic side of the cytoplasmic membrane.Abbreviations BVH reduced benzyl viologen - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DIECA N, N-diethyl-dithiocarbamate - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - NEM N-ethylmaleimide  相似文献   

3.
Washed cells of Rhodopseudomonas sphaeroides f. sp. denitrificans, prepared from cultures grown anaerobically in light with NO 3 - as the terminal acceptor, readily incorporated [14C]-proline both in light and in the dark. The proline uptake was coupled to the reduction of either NO 3 - , NO 2 - , N2O or O2. Light stimulated the accumulation of proline in these cells. The addition of NO 3 - to washed cells in light decreased the K m for proline from 40 M to 5.7 M. Proline transport was inhibited by antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide both in light and in the dark with nitrate indicating that electron transfer from both denitrification and photosynthesis are involved in this uptake. Inhibition by carbonyl cyanide-m-chlorophenyl hydrazone and 2.4-dinitrophenol indicate that proline transport is energy dependent. The H+/proline stoichiometry increased from 1 to 2.5 when the external pH was increased from 6.0 to 8.0. Under these conditions pro increased but p decreased markedly above pH 7.0.Abbreviations TPP+ Tetraphenylphosphonium bromide - EDTA ethylenediamine-tetra-acetic acid - CCCP carbonyl cyanide-m-chlorophenyl hydrazone - DNP 2,4-dinitrophenol - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - DBMIB dibromo-methyl-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

4.
Nitrate, nitrite and nitrous oxide were denitrified to N2 gas by washed cells ofRhizobium japonicum CC706 as well as by bacteroids prepared from root nodules ofGlycine max (L.) Merr. (CV. Clark 63). Radiolabelled N2 was produced from either K15NO3 or Na15NO2 by washed cells ofRh. japonicum CC705 grown with either nitrate only (5 mM) or nitrate (5 mM) plus glutamate (10 mM). Nitrogen gas was also produced from N2O. Similar results were obtained with bacteroids ofG. max. The stoichiometry for the utilization of15NO 3 - or15NO 2 - and the produciton of15N2 was 2:1 and for N2O utilization and N2 production it was 1:1. Some of the15N2 gas produced by denitrification of15NO 3 - in bacteroids was recycled via nitrogenase into cell nitrogen.  相似文献   

5.
Membrane vesicles derived from whole cells of the strictly anaerobic rumen bacterium Bacteroides amylophilus exhibited fumarate reductase activity with NADH, FADH2, FMNH2, or reduced viologens as electron donors. The fumarate reductase system is most likely localized on the cytoplasmic side of the plasma membrane. Cytochromes and menaquinone were not detectable.The NADH-dependent activity was inactivated by oxygen, an endogenous protease, and by irradiation at 254 nm. The electron transport inhibitor HpHOQnO and Zn2+ were identified as strong inhibitors of the fumarate reductase reaction. Two types of functional SH-groups might be operative in this system as probed by ClHgSO3H. The oxidation of NADH by fumarate was stimulated by low concentrations of Na+.Concentrations of Na+ in the range of 4 to 30 mM had a pronounced influence on growth rate and cell yield of B. amylophilus. In the presence of 1 mM NaCl growth was observed only after a lag-period of 15 h.Abbreviations ClHgSO3H 4-chloromercuriphenylsulfonate - DTE dithioerythritol - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - HpHOQnO 2-n-heptyl-4-hydroxyquinoline-N-oxide - NoHOQnO 2-n-nonyl-4-hydroxyquinoline-N-oxide - PMSF phenylmethylsulfonylfluoride - Tris tris(hydroxymethyl)-aminomethane Dedicated to Prof. N. Pfennig on the occasion of his 60th birthday Present address: Heinz-Georg Wetzstein, Bayer AG, EP-AQ-QL, E39, D-5090 Leverkusen, FRG  相似文献   

6.
The mechanism of anaerobic reduction of NO2? to N2O in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, was investigated. With ascorbate-reduced phenazine methosulfate (PMS) as the electron donor, the nitrite reductase of this photodenitrifier reduced NO2? to NO and a trace amount of N2O. With dithionite-reduced benzyl viologen as the electron donor, the major product of NO2? reduction was NH2OH, and a trace amount of N2O was also produced. The nitrate reductase itself had no NO reductase activity with ascorbate-reduced PMS. It was concluded that the essential product of NO2? reduction by the purified nitrite reductase is NO. Chromatophore membranes stoichiometrically produced N2O from NO2? with any electron donor, such as dithionite-redduced benzyl viologen, ascorbate-reduced PMS or NADH/FMN. The membranes also contrained activity of NO reduction of N2O with either ascorbate-reduced PMS or duroquinol. The NO reductase activity with duroquinol was inhibited by antimycin A. Stoichiometric production of N2O from N2? also was observed in the reconstituted NO2? reduction system which contained the cytochrome bc1 complex, cytochrome c2, the nitrite reductase and duroquinol as the electron donor. The preparation of the cytochrome bc1 complex itself contianed NO reductase activity. From these results the mechanism of NO2? reduction to N2O in this photodenitrifier was determined as the nitrite reductase reducing NO2? to NO with electrons from the cytochrome bc1 complex, and NO subsequently being reduced, without release, to N2O with electrons from the cytochrome bc1 complex by the NO reductase, which is closely associated with the complex.  相似文献   

7.
An inducible sulfite reductase was purified from Clostridium pasteurianum. The pH optimum of the enzyme is 7.5 in phosphate buffer. The molecular weight of the reductase was determined to be 83,600 from sodium dodecyl sulfate gel electrophoresis with a proposed molecular structure: 22. Its absorption spectrum showed a maximum at 275 nm, a broad shoulder at 370 nm and a very small absorption maximum at 585 nm. No siroheme chromophore was isolated from this reductase. The enzyme could reduced the following substrates in preferential order: NH2OH> SeO 3 2- >NO 2 2- at rates 50% or less of its preferred substrate SO 3 2- . The proposed dissimilatory intermediates, S3O 6 2- or S2O 3 2- , were not utilized by this reductase while KCN inhibited its activity. Varying the substrate concentration [SO 3 2- ] from 1 to 2.5 mol affected the stoichiometry of the enzyme reaction by alteration of the ratio of H2 uptake to S2- formed from 2.5:1 to 3.1:1. The inducible sulfite reductase was found to be linked to ferredoxin which could be completely replaced by methyl viologen or partially by benzyl viologen. Some of the above-mentioned enzyme properties and physiological considerations indicated that it was a dissimilatory type sulfite reductase.Abbreviations SDS sodium dodecyl sulfate - BSA bovine serum albumin - LDH Lactate dehydrogenase  相似文献   

8.
Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. H+/O values and H+/NO 2 - values were measured with ascorbate + N,N,N,N-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a H+/2e value of 2.0. The H+/O and H+/NO 2 - values predicted by this scheme are in good agreement with the experimental values.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MTPP+ methyltriphenylphosphonium cation - TMPD N,N,N,N-tetramethyl-p-phenylenediamine; H+/O (H+/NO 2 - ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO 2 - ); H+/2e (q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor  相似文献   

9.
Nitrate reduction was studied in the dinoflagellatePeridinium cinctum collected from extensive algal blooms in Lake Kinneret (Israel).Among several methods tested for the preparation of cell free extracts, only the use of a ground-glass tissue culture homogenizer was found to be efficient. The assimilatory nitrate reductase ofP. cinctum was located in a particulate fraction. In this respect,P. cinctum did not behave like other eukaryotes, such as green algae, but as a prokaryote. Nitrite reductase activity was found in the soluble fraction.Nitrate reductase used NADH as a preferable electron donor; it reacted also with NADPH but only to give 16.5% of the NADH dependent rate. Methyl viologen and benzyl viologen could also serve as electron donors, with rates higher than the NADH dependent activity (3–6 times and 1.5–3 times, respectively). The Km of nitrate reductase for NADH was 2.8×10–4 M and for NO3-1.9×10–4 M. Flavins did not stimulate the activity, nor was ferricyanide able to activate it. Carboxylic anions stimulated nitrate reductase activity 3–4 fold, an effect which was not mimicked by other anions.Chlorate, azide and cyanide were competitive inhibitors ofP. cinctum, nitrate reductase withK i values of 1.79×10–3 M, 2.1×10–5 M and 8.9×10–6 M respectively.  相似文献   

10.
Beggiatoa alba B18LD utilizes both nitrate and nitrite as sole nitrogen sources, although nitrite was toxic above 1 mM.B. alba coupledin vivo acetate oxidation, but not sulfide oxidation, with nitrate and nitrite reduction.B. alba could not, however, grow anaerobically with nitrate as the sole electron acceptor. Furthermore, the incorporation of acetate into macromolecules under anaerobic conditions with nitrate as the sole electron acceptor was less 10% of the incorporation with oxygen as the electron acceptor. The product of nitrate reduction byB. alba was ammonia; N2 or N2O were not produced. The nitrate reductase activity inB. alba was soluble and it utilized reduced flavins or methyl viologen and dithionite as electron donors. Pyrimidine nucleotides were not used as in vitro electron donors, either alone or with flavins in coupled assays. TheB. alba nitrate reductase activity was competitively inhibited with chlorate and was only mildly inhibited by azide and cyanide. Nitrate was not required for induction of theB. alba nitrate reductase, and neither oxygen nor ammonia repressed its activity. Thus,B. alba nitrate reductase appears to be an assimilatory nitrate reductase with unusual regulatory properties.Non-standard abbreviations MV Methyl viologen - DT dithionite - GS glutamine synthetase - GOGAT glutamine 2-oxoglutarate aminotransferase - PPO 2-diphenyloxazole - POPOP 1,4-(bis)-[2-(5-phenyloxazolyl)] benzene - TCA trichloroacetic acid - CCCP carbonylcyanidem-chlorophenylhydrazone - FCCP carbonylcyanidep-trifluoromethoxyphenylhydrazone - TTFA thenoyltrifluoroacetone - PHEN 1,10-phenanthroline - HOQNO 2-heptyl 4-hydroxyquinoline-n-oxide - 8HQ 8-hydroxyquinoline  相似文献   

11.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

12.
Maize (Zea mays L.) grown on low (0.8 mM) NO 3 - , as well as untransformed and transformed Nicotiana plumbaginifolia constitutively expressing nitrate reductase (NR), was used to study the effects of NO 3 - on the NR activation state. The NR activation state was determined from the relationship of total activity extracted in the presence of ethylenediaminetetracetic acid to that extracted in the presence of Mg2+. Light activation was observed in both maize and tobacco leaves. In the tobacco lines, NO 3 - did not influence the NR activation state. In excised maize leaves, no correlation was found between the foliar NO 3 - content and the NR activation state. Similarly, the NR activation state did not respond to NO 3 - . Since the NR activation state determined from the degree of Mg2+-induced inhibition of NR activity is considered to reflect the phosphorylation state of the NR protein, the protein phosphatase inhibitor microcystin LR was used to test the importance of protein phosphorylation in the NO 3 - -induced changes in NR activity. In-vivo inhibition of endogenous protein phosphatase activity by microcystin-LR decreased the level of NR activation in the light. This occurred to the same extent in the presence or absence of exogenous NO 3 - . We conclude that NO 3 - does not effect the NR activation state, as modulated by protein phosphorylation in either tobacco (a C3 species) or maize (a C4 species). The short-term regulation of NR therefore differs from the NO 3 - -mediated responses observed for phosphoenolpyruvate carboxylase and sucrose phosphate synthase.Abbreviations Chl chlorophyll - MC microcystin-LR - PEP-Case phosphoenolpyruvate carboxylase - SPS sucrose-phosphate synthase We are indebted to Madeleine Provot and Nathalie Hayes for excellent technical assistance. This work was funded by EEC Biotechnology Contract No. BI02 CT93 0400, project of technical priority, Network D — Nitrogen Utilisation and Efficiency.  相似文献   

13.
Hans Breteler  Wieslaw Luczak 《Planta》1982,156(3):226-232
The uptake and conversion of NO 2 - and the effect of NO 2 - on the uptake and reduction of NO 3 - were examined in N-depleted Phaseolus vulgaris L. Nitrite uptake at 0.1 mmol dm-3 was against an electrochemical gradient and became constant after one or two initial phases. Steadystate uptake declined with increasing ambient NO 2 - concentration (0–0.7 mmol dm-3). In this concentration range root oxygen consumption was unaffected by NO 2 - , indicating that the decrease of NO 2 - uptake was not related to respiration. After 6 h NO 2 - supply, about one-third of the absorbed NO 2 - had accumulated, mainly in the root system. Oxidation of NO 2 - to NO 3 - was not observed. The apparent induction period for NO 3 - uptake was about 6 h in control plants and 3.5 h in plants that were pretreated for 18 h with NO 2 - . In contrast, the time course of NO 2 - uptake was unaffected by pretreatment with NO 3 - . Steadystate NO 3 - uptake was less affected by NO 2 - than was steady-state NO 2 - uptake by NO 3 - . Nitrate reductase activity (NRA) in leaves and roots was induced by both NO 3 - and NO 2 - . In roots, induction with NO 2 - was faster than with NO 3 - , but there was no difference in NRA after 5 h. Nitrite inhibited NRA in the roots of NO 3 - -induced plants and thus seems to stimulate the induction, but not the activity of induced nitrate reductase. In view of the observed differences in time course and mutual competition, a common uptake mechanism for NO 2 - and NO 3 - seems unlikely. Expression of the NO 2 - effect on the induction of NO 3 - uptake required more time than the induction itself. We therefore conclude that NO 2 - is not the physiological inducer of NO 3 - uptake.Abbreviations NR(A) nitrate reductase (activity) - BM basal medium  相似文献   

14.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

15.
Growth and nitrate reductase activity were measured in Paul's Scarlet rose cell suspensions, cultured in media purified from molybdenum and containing nitrate or urea as sole nitrogen source with or without added Mo. Urea could replace nitrate to yield 80% of the fresh weight in nitrate medium. Nitrate reductase activities were compared by in vivo and in vitro assays. The latter varied due to inactivation during extraction. Compared with activities in cells in complete NO3 - medium, activity in NO3 --Mo cells was reduced to 30% and, in urea-grown cells, to trace amounts. Increases in nitrate reductase activity were found when NO3 - alone was added to NO3 - or urea+Mo cultures. In NO3 --Mo cultures, Mo alone or with NO3 - caused a similar increase in activity, whereas urea-Mo cultures required both NO3 - and Mo for enzyme induction.Abbreviations FAD flavin adenine dinucleotide - Mo molybdenum - NADH reduced nicotinamide adenine dinucleotide - NO3 -+Mo standard MX1 culture medium - NO3 --Mo MX1 medium purified of Mo and used for continuous subculture with nitrate - NR nitrate reductase - PSR Paul's Scarlet rose - PVP polyvinylpyrrolidone - U urea - U+Mo MX1 medium containing urea instead of nitrate - U-Mo MX1 medium containing urea instead of nitrate and also purified of Mo  相似文献   

16.
The localization of the dissimilatory sulfite reductase in Desulfovibrio desulfuricans strain Essex 6 was investigated. After treatment of the cells with lysozyme, 90% of the sulfite reductase activity was found in the membrane fraction, compared to 30% after cell rupture with the French press. Sulfite reductase was purified from the membrane (mSiR) and the soluble (sSiR) fractiion. On SDS-PAGE, both mSiR and sSiR exhibited three bands at 50, 45 and 11 kDa, respectively. From their UV/VIS properties (distinct absorption maxima at 391, 410, 583, 630 nm, enzymes as isolated) and the characteristic red fluorescence in alkaline solution, mSiR and sSiR were identified as desulfoviridin. Sulfite reductase (HSO3 -H2S) activity was reconstituted by coupling of mSiR to hydrogenase and cytochrome c 3 from D. desulfuricans. The specific activity of mSiR was 103 nmol H2 min-1 mg-1, and sulfide was the major product (72% of theoretical yield). No coupling was found with sSiR under these conditions. Furthermore, carbon monoxide was used to diferentiate between the membrane-bound and the soluble sulfite reductase. In a colorimetric assay, with photochemically reduced methyl viologen as redox mediator, CO stimulated the activity of sSiR significantly. CO had no effect in the case of mSiR. These studies documented that, as isolated, both forms of sulfite reductase behaved differently in vitro. Clearly, in D. desulfuricans, the six electron conversion HSO3 -H2S was achieved by a membranebound desulfoviridin without the assistance of artificial redox mediators, such as methyl viologen.Abbreviations SiR sulfite reductase - mSiR sulfite reductase purified from membranes - sSiR sulfite reductase purified from the soluble fraction Enzymes Sulfite reductase, EC 1.8.99.1 Cytochrome c 3 hydrogenase, EC 1.12.2.1  相似文献   

17.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3 - concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3 - concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3 - concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3 - consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days.  相似文献   

18.
Metabolism of ammonia (NH3) and hydroxylamine (NH2OH) by wild-type and a nitrite reductase (nirK) deficient mutant of Nitrosomonas europaea was investigated to clarify the role of NirK in the NH3 oxidation pathway. NirK-deficient N. europaea grew more slowly, consumed less NH3, had a lower rate of nitrite (NO2 ) production, and a significantly higher rate of nitrous oxide (N2O) production than the wild-type when incubated with NH3 under high O2 tension. In incubations with NH3 under low O2 tension, NirK-deficient N. europaea grew more slowly, but had only modest differences in NH3 oxidation and product formation rates relative to the wild-type. In contrast, the nirK mutant oxidized NH2OH to NO2 at consistently slower rates than the wild-type, especially under low O2 tension, and lost a significant pool of NH2OH–N to products other than NO2 and N2O. The rate of N2O production by the nirK mutant was ca. three times higher than the wild-type during hydrazine-dependent NO2 reduction under both high and low O2 tension. Together, the results indicate that NirK activity supports growth of N. europaea by supporting the oxidation of NH3 to NO2 via NH2OH, and stimulation of hydrazine-dependent NO2 reduction by NirK-deficient N. europaea indicated the presence of an alternative, enzymatic pathway for N2O production.  相似文献   

19.
For Azospirillum brasilense Sp7, the energy transformation efficiencies were measured in anaerobic respirations with either nitrate, nitrite or nitrous oxide as respiratory electron acceptors by determining the maximal molar growth yields and the H+-translocations using the oxidant pulse method. In continuous cultures grown with malate limiting, the maximal molar growth yields (Y s max -values) were essentially the same with O2 or N2O but were 1/3 and 2/3 lower with NO 2 - or NO 3 - , respectively, as respiratory electron acceptors. Both the maximal molar growth yields and the maintenance energy coefficients were surprisingly high when Azospirillum was grown with nitrite as the sole electron acceptor and source for N-assimilation. Growth under N2-fixing conditions drastically reduced the Y s max -values in the N2O and O2-respiring cells. In the H+-translocation measurements, the /oxidant ratios were 5.6 for O2→H2O, 2.5–2.8 for NO 3 - →NO 2 - , 2.2 for NO 2 - →N2O and 3.1 for N2O→N2 respirations when the cells were preincubated with valinomycin and K+. All the values were enhanced when the experiments were performed with valinomycin plus methyltriphenylphosphonium (=TPMP+) cation. The uncoupler carbonyl cyanide-m-chlorophenyl-hydrazone diminished the H+-excretion indicating that this translocation was due to vectorial flow across the membrane. In the absence of any ionophore, nitrate and nitrite respirations were accompanied by a H+-uptake . Any significant H+-translocation could not be detected in N2O- and O2-respirations under these conditions. It is concluded that nitrate reduction proceeds inside the cytoplasmic membrane, whereas nitrite is reduced extramembraneously. The data are not conclusive for the location of nitrous oxide reductase. The maximal molar growth yield determinations and the absence of any H+-uptake in untreated cells indicate a cytoplasmic orientation of the enzyme similar to the terminal cytochrome oxidase of respiration. The low H+-extrusion values for N2O-respiration compared to O2-respiration in cells treated with valinomycin plus TPMP+ are, however, not in accord with such an interpretation.  相似文献   

20.
Nitrous oxide reductase from Wolinella succinogenes was tested for benzyl viologen cation (BV+)-chlorinated methane oxidoreductase activity, using di-, tri- and tetra-chloromethanes, and for the inhibition of BV+-N2O oxidoreductase activity by these chloromethanes. No BV+-chlorinated methane oxidoreductase activity was detected. Any such activity, if it exists, must be less than 0.1% of the BV+-N2O oxidoreductase activity of the enzyme. Inhibition of the BV+-N2O oxidoreductase activity by dichloromethane was detected and was apparently reversible and non-competitive, as is the case with the small metal-ligand type inhibitors of the enzyme (e.g. acettlene, azide, cyanide and carbon monoxide). Trichloromethane was a weaker inhibitor and inhibition was not detected with tetrachloromethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号