首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nile tilapia (Oreochromis niloticus) is a prominent farmed fish in aquaculture worldwide. Crossbreeding has recently been carried out between the Red-Stirling and the wt Chitralada strains of Nile tilapia, producing a heterotic hybrid (7/8 Chitralada and 1/8 Red-Stirling) that combines the superior growth performance of the Chitralada with the reddish coloration of the Red-Stirling strain. While classical selective breeding and crossbreeding strategies are well known, the molecular mechanisms underlying the phenotypic expression of economically advantageous traits in tilapia remain largely unknown. Molecular investigations have shown that variable expression of growth hormone (gh), insulin-like growth factors (igf1 and 2) and somatolactin (smtla) – components of the growth hormone/insulin-like growth factor (GH/IGF) axis – and myostatin (mstn) genes can affect traits of economic relevance in farmed animals. The aim of this study was to assess and compare the gene expression signature among Chitralada, Red-Stirling and their backcross hybrid in order to gain insights into the effects of introgressive breeding in modulation of the GH/IGF axis. Gene expression analyses in distinct tissues showed that most genes of the GH/IGF axis were up-regulated and mstn was down-regulated in backcross animals in comparison with Red-Stirling and Chitralada animals. These gene expression profiles revealed that backcross animals displayed a distinctive expression signature, which attests to the effectiveness of the introgressive breeding technique. Our findings also suggest that the GH/IGF axis and mstn genes might be candidate markers for fish performance and prove useful within genetic improvement programs aimed at the production of superior-quality tilapia strains using introgressive breeding.  相似文献   

2.
3.
Humans are constantly exposed to cadmium (Cd) as a result of the increase in air pollution and cigaret use. Zinc (Zn), which is an essential element for the metabolism of and the constituent of many enzymes, causes growth retardation in the deficiency status so at present it is often added to the diet without measuring blood levels of this element. We also aimed to observe the effects of both Cd and Zn on the plasma levels of growth hormone (GH), insulin-like growth factor I(IGF-I), and insulin-like growth factor-binding protein 3 (IGFBP-3) in this study. For this purpose, 27 young Wistar albino male rats were divided into three groups. The first group was given 50 mg/L of CdCl2, the second group received 500 mg/L of ZnSO4, and the third group, as a control, received only drinking water for 1 mo. At the end of this period, plasma GH, IGF-I, and IGFBP-3 of the animals were analyzed in the blood obtained. The significance between groups was evaluated with the Mann-Whitney U-test. According to our results, levels of IGF-I and IGFBP-3 in the Cd-administered group were significantly lower than those of controls (p<0.05 and p<0.01 respectively). No statistically significant difference was observed between Zn administered and control groups in terms of all three parameters. These results show that although the addition of Zn to the diet of healthy rats had no effect on the levels of GH, IGF-I, and IGFBP-3, Cd addition lowered the levels of IGF-I and IGFBP-3 but did not change the levels of GH compared to controls.  相似文献   

4.
Since the glucose-lowering effects of vanadium could be related to increased muscle glycogen synthesis, we examined the in vivo effects of vanadium and insulin treatment on glycogen synthase (GS) activation in Zucker fatty rats. The GS fractional activity (GSFA), protein phosphatase-1 (PP1), and glycogen synthase kinase-3 (GSK-3) activity were determined in fatty and lean rats following treatment with bis(maltolato)oxovanadium(IV) (BMOV) for 3 weeks (0.2 mmol/kg/day) administered in drinking water. Skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). In both lean and fatty rats, muscle GSFA was significantly increased at 15 min following insulin stimulation. Vanadium treatment resulted in decreased insulin levels and improved insulin sensitivity in the fatty rats. Interestingly, this treatment stimulated muscle GSFA by 2-fold (p < 0.05) and increased insulin-stimulated PP1 activity by 77% (p < 0.05) in the fatty rats as compared to untreated rats. Insulin resistance, vanadium and insulin in vivo treatment did not affect muscle GSK-3 activity in either fatty or lean rats. Therefore, an impaired insulin sensitivity in the Zucker fatty rats was improved following vanadium treatment, resulting in an enhanced muscle glucose metabolism through increased GS and insulin-stimulated PP1 activity.  相似文献   

5.
Ames dwarf (Prop1df, df/df) mice are characterized by growth hormone (GH), prolactin, and thyrotropin deficiency, remarkable extension of longevity and increased insulin sensitivity with low levels of fasting insulin and glucose. Plasma levels of anti‐inflammatory adiponectin are increased in df/df mice, while pro‐inflammatory IL‐6 is decreased in plasma and epididymal fat. This represents an important shift in the balance between pro‐ and anti‐inflammatory adipokines in adipose tissue, which was not exposed to GH signals during development or adult life. To determine the role of adipose tissue in the control of insulin signaling in these long‐living mutants, we examined the effects of surgical removal of visceral (epididymal and perinephric) adipose tissue. Comparison of the results obtained in df/df mice and their normal (N) siblings indicated different effects of visceral fat removal (VFR) on insulin sensitivity and glucose tolerance. The analysis of the expression of genes related to insulin signaling indicated that VFR improved insulin action in skeletal muscle in N mice. Interestingly, this surgical intervention did not improve insulin signaling in df/df mice skeletal muscle but caused suppression of the signal in subcutaneous fat. We conclude that altered profile of adipokines secreted by visceral fat of Ames dwarf mice may act as a key contributor to increased insulin sensitivity and extended longevity of these animals.  相似文献   

6.
Lewis, Michael I., Thomas J. LoRusso, and Mario Fournier.Effect of insulin-like growth factor I and/or growthhormone on diaphragm of malnourished adolescent rats.J. Appl. Physiol. 82(4):1064-1070, 1997.Young growing animals appear to havesignificantly reduced "nutritional reserve" to short periods ofunstressed starvation compared with adults, with resultant growtharrest and/or atrophy of diaphragm (Dia) muscle fibers. The aimof this study was to assess in an adolescent rat model of acutenutritional deprivation (ND; 72 h) the impact of insulin-like growthfactor I (IGF-I), with or without added growth hormone (GH), on thecross-sectional areas (CSA) of individual Dia muscle fibers. Fivegroups were studied: 1) control(Ctr); 2) ND;3) ND given IGF-I (ND/IGF-I); 4) ND given GH (ND/GH); and5) ND given a combination of IGF-I and GH (ND/IGF-I/GH). IGF-I was given by a subcutaneously implanted osmotic minipump (200 µg/day), whereas GH was administered twice daily by a subcutaneous injection (250 µg every 12 h). Isometric contractile and fatigue properties of the Dia were determined in vitro.Forces were normalized for muscle CSA (i.e., specific force). Dia fibertype proportions were determined histochemically, and fiber CSA wasquantified by using a computer-based image-processing system. Totalserum IGF-I concentrations were significantly reduced in ND and ND/GHanimals, compared with Ctr, and elevated in the groups receiving IGF-I.The provision of growth factors did not alter the contractile orfatigue properties of ND animals. Dia fiber type proportions weresimilar among the groups. In ND animals, there was a significantreduction in the CSA of types I, IIa, IIx, and IIc Dia fibers comparedwith Ctr. The administration of IGF-I alone or in combination with GHto ND animals significantly diminished the reduction in Dia fiber size.GH alone had no effect on Dia fiber size in ND animals. We concludethat with acute ND the peripheral resistance to the action of GHappears to be bypassed by the administration of IGF-I alone or incombination with GH.

  相似文献   

7.
The counter-regulatory effects of beta-adrenergic stimulation and cyclic AMP on the insulin-like action of growth hormone (GH) on the subcellular distribution of insulin-like growth factor II (IGF-II) receptors were studied in fat cells from hypophysectomized (Hx) and sham-operated rats. For comparison, the effect of insulin on this process was also studied. Basal IGF-II binding was increased by approx. 2-fold in cells from Hx as compared with sham-operated animals. The stimulatory effect of insulin was decreased in Hx cells, mainly due to a basal redistribution but also to a reduced total number of receptors. GH exerted an acute insulin-like effect in cells from Hx rats and stimulated the translocation of IGF-II receptors from an intracellular pool to the plasma membrane. beta-Adrenergic stimulation with isoprenaline or addition of the non-metabolizable cyclic AMP-analogue N6-monobutyryl cyclic AMP induced a cellular resistance to both GH and insulin and also reduced the responsiveness to these hormones. Adenosine exerted a modulatory effect on both hormones. Binding of 125I-labelled GH to its receptors was not significantly changed by any of these factors. It is concluded that: (1) beta-adrenergic stimulation and cyclic AMP induce a cellular GH resistance at a level distal to the GH-binding site, and (2) the insulin-like effect of GH shares a common pathway with insulin which occurs at the post-binding level.  相似文献   

8.
The diaphragm of the pituitary intact rat is insensitive to the insulin-like effects of growth hormone unless weanling animals are used, and even then these effects are not achieved reliably. We report here that an intraperitoneal injection of reserpine is able to induce consistent responsiveness to ovine growth horomone (oGH) in hemidiaphragms from 20-27 day old rats as assessed by stimulation of 3H-AIB transport and 14C-phenylalanine incorporation into protein. Maximal stimulation of 3H-AIB transport (approximately 40%) can be elicited by addition of oGH (5 micrograms/ml) to hemidiaphragms after a 2 mg/kg injection of reserpine given 5 h prior to sacrifice. The degree of stimulation does not alter significantly if the rats are sacrificed 3, 5 or 12 h after administration of reserpine, although it decreases by 24 h. Administration of reserpine 3 h before sacrifice also leads to a 50% increase in 14C-phenylalanine incorporation into protein in rat diaphragms in response to the addition of oGH (5 micrograms/ml). The induced sensitivity to oGH is not due to inhibition of GH secretion by reserpine as demonstrated by RIA of plasma GH. Addition of a monoclonal antibody to the GH receptor (MAb263) did not result in a stimulation or inhibition of 3H-AIB uptake or stimulation of protein synthesis in reserpinized rat hemidiaphragms. These results suggest that reserpine can induce tissue responsiveness in rats 20-27 d.o. independent of plasma GH levels. Our results also imply that the type 1 GH receptor of Barnard, Bundesen, Rylatt and Waters (1985) does not mediate the insulin like actions of GH on rat diaphragm.  相似文献   

9.
Insulin resistance is a cardinal feature of normal pregnancy and excess growth hormone (GH) states, but its underlying mechanism remains enigmatic. We previously found a significant increase in the p85 regulatory subunit of phosphatidylinositol kinase (PI 3-kinase) and striking decrease in IRS-1-associated PI 3-kinase activity in the skeletal muscle of transgenic animals overexpressing human placental growth hormone. Herein, using transgenic mice bearing deletions in p85alpha, p85beta, or insulin-like growth factor-1, we provide novel evidence suggesting that overexpression of p85alpha is a primary mechanism for skeletal muscle insulin resistance in response to GH. We found that the excess in total p85 was entirely accounted for by an increase in the free p85alpha-specific isoform. In mice with a liver-specific deletion in insulin-like growth factor-1, excess GH caused insulin resistance and an increase in skeletal muscle p85alpha, which was completely reversible using a GH-releasing hormone antagonist. To understand the role of p85alpha in GH-induced insulin resistance, we used mice bearing deletions of the genes coding for p85alpha or p85beta, respectively (p85alpha (+/-) and p85beta(-/-)). Wild type and p85beta(-/-) mice developed in vivo insulin resistance and demonstrated overexpression of p85alpha and reduced insulin-stimulated PI 3-kinase activity in skeletal muscle in response to GH. In contrast, p85alpha(+/-)mice retained global insulin sensitivity and PI 3-kinase activity associated with reduced p85alpha expression. These findings demonstrated the importance of increased p85alpha in mediating skeletal muscle insulin resistance in response to GH and suggested a potential role for reducing p85alpha as a therapeutic strategy for enhancing insulin sensitivity in skeletal muscle.  相似文献   

10.
The metabolic aberrations associated with diabetes mellitus profoundly alter the growth hormone/insulin-like growth factor I (GH/IGF-I) system. In severe experimental diabetes, serum IGF-I level is reduced, reflecting altered hepatic expression. On the other hand, increased levels of kidney IGF-I have been implicated in the development of diabetic kidney disease. This study aimed to examine the effect of mild experimental diabetes with hypoinsulinemia on both the systemic and renal GH/IGF-I systems in a low-dose streptozotocin (STZ)-induced diabetic rat. Diabetic animals with mild hypoinsulinemia developed renal hyperfiltration within 3 days of diabetes, whereas the renal size increased significantly only between 30 and 48 days of diabetes. Plasma GHlevels were unchanged during the entire course of the study, but a decrease in serum IGF-I, IGF-binding protein 3 (IGFBP-3), and IGF-binding protein 4 (IGFBP-4) occurred after 10, 30, and 48 days. Kidney IGF-I and IGF-binding protein 1 (IGFBP-1) mRNA expression increased after 10 and 30 days of diabetes. A significant increase in kidney IGFBP-1/2, IGFBP-3, and IGFBP-4 proteins was seen after 48 days of diabetes.Apositive correlations was found between renal growth and insulin/glucose ratio (r = .57), kidney IGF-I (r = .57), IGFBP-1 mRNA(r = .43), IGFBP-1/2 (r = .41), and IGFBP-4 levels (r = .40). These results demonstrate hyperfiltration within 3 days of diabetes and a similar response in the IGF-I system in mildly and severely hypoinsulinemic rats; however, renomegaly develops slower in mildly diabetic rats at least partly due to delayed changes in the renal IGF and IGF BPs.  相似文献   

11.
The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic females being more hypertrophic than transgenic males. The expression of genes related to muscle growth revealed that transgenic hypertrophy is independent from local induction of insulin-like growth factor 1 gene (igf1). In addition, transgenic males exhibited significant induction of myogenin gene (myog) expression, indicating that myog may mediate hypertrophic growth in zebrafish males overexpressing GH. Induction of the α-actin gene (acta1) in males, independently from transgenesis, also was observed. There were no significant differences in total protein content from the muscle. Our results show that muscle hypertrophy is independent from muscle igf1, and is likely to be a direct effect of excess circulating GH and/or IGF1 in this transgenic zebrafish lineage.  相似文献   

12.
Myostatin and mechano-growth factor (MGF), an isoform of insulin-like growth factor-I (IGF-I), are two important regulators of muscle hypertrophy. The aim of the present study was to investigate the effects of recombinant human growth hormone (rhGH) and/or testosterone on muscle MGF/IGF-IEa/myostatin expression in intact and hypophysectomized rats treated for 15 d with 1) saline or rhGH, 2) sesame oil or testosterone, 3) saline+sesame oil, or rhGH+testosterone (first experiment) or for 7 d with saline or rhGH (second experiment). Animals were killed by decapitation 24 h or 4 d after the last injection (first or second experiment, respectively). Muscle expressions of MGF, IGF-IEa, and myostatin were determined by RT-PCR. A significant increase in the weight of gastrocnemius muscle was observed only in hypophysectomized rats treated with rhGH alone or in combination with testosterone. Administration of rhGH to hypophysectomized rats caused a marked increase in both MGF and IGF-IEa muscle mRNA levels (without any change in the muscle expression of myostatin), an effect that was abolished when testosterone was combined with rhGH. Conversely, in intact rats rhGH increased myostatin muscle mRNA levels without affecting those of MGF and IGF-IEa. Testosterone, alone or combined with rhGH, induced an inhibition of myostatin expression in the muscle of intact rats, but did not change muscle paradigms of hypophysectomized rats. In conclusion, rhGH and/or testosterone anabolic effects in the muscle are mediated by a different expression of MGF/IGF-IEa/myostatin, which is related to the pituitary function.  相似文献   

13.
The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 ± 35 μg/L and 62 ± 11 μg/L in the diabetic compared to the nondiabetic mice (P < .05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats.  相似文献   

14.
The insulin-like effects of peroxovanate (POV) and peroxovanadyl (PSV) on rates of lactate formation and glycogen synthesis were measured in isolated incubated soleus muscle preparations. In another experiment rats were made insulin deficient by streptozotocin injection and treated with POV and PSV (0.25 mM) administered in the drinking water and in the course of 7 days glycemia were determined. Also, signal transduction proteins ERK 1 and ERK 2 involved in the insulin signaling were measured in soleus muscle of diabetic rats treated with POV and PSV. Peroxides of vanadate and vanadyl significantly stimulated glucose utilization in soleus muscle preparations in vitro. The stimulation of glycogen synthesis and lactate formation by POV and PSV was similar to insulin stimuli. Rats treated with POV or PSV presented reduction of glycemia, food and fluid intake with amelioration of the diabetic state during the short period of treatment (7 days). POV and PSV modulated ERK1/2 phosphorilation and the insulin administration in these rats caused an addictive effect on phosphorilation state of these proteins.  相似文献   

15.
In lower or simple species, such as worms and flies, disruption of the insulin‐like growth factor (IGF)‐1 and the insulin signaling pathways has been shown to increase lifespan. In rodents, however, growth hormone (GH) regulates IGF‐1 levels in serum and tissues and can modulate lifespan via/or independent of IGF‐1. Rodent models, where the GH/IGF‐1 axis was ablated congenitally, show increased lifespan. However, in contrast to rodents where serum IGF‐1 levels are high throughout life, in humans, serum IGF‐1 peaks during puberty and declines thereafter during aging. Thus, animal models with congenital disruption of the GH/IGF‐1 axis are unable to clearly distinguish between developmental and age‐related effects of GH/IGF‐1 on health. To overcome this caveat, we developed an inducible liver IGF‐1‐deficient (iLID) mouse that allows temporal control of serum IGF‐1. Deletion of liver Igf1 gene at one year of age reduced serum IGF‐1 by 70% and dramatically impaired health span of the iLID mice. Reductions in serum IGF‐1 were coupled with increased GH levels and increased basal STAT5B phosphorylation in livers of iLID mice. These changes were associated with increased liver weight, increased liver inflammation, increased oxidative stress in liver and muscle, and increased incidence of hepatic tumors. Lastly, despite elevations in serum GH, low levels of serum IGF‐1 from 1 year of age compromised skeletal integrity and accelerated bone loss. We conclude that an intact GH/IGF‐1 axis is essential to maintain health span and that elevated GH, even late in life, associates with increased pathology.  相似文献   

16.
17.
18.
Recombinant adeno-associated virus serotype 2 (rAAV2) vector has been widely employed for gene therapy. Recent progress suggests that the new serotypes of AAV showed a better performance than did AAV2 in normal tissues. Here, we evaluate the potential role of human vascular endothelial growth factor (VEGF) gene transfer using rAAV vector pseudotyped with serotype 1 capsid proteins (rAAV1) in the treatment of muscle ischemia. In ischemic skeletal muscles, the rAAV1-LacZ vector allowed higher level, broader distribution, and long-lasting gene expression compared with the rAAV2-LacZ vector. Muscle VEGF165 production following the rAAV1-VEGF165 vector injection was 5-10 times higher than that following the rAAV2-VEGF165 vector injection. VEGF165 production mediated by the rAAV1-VEGF165 vector stimulated a large set of neovascularization with relatively mature vascular structures and enhanced muscle regeneration in the ischemic skeletal muscles. Thus, the rAAV1-VEGF165 vector mediated gene transfer may be a therapeutic approach to peripheral vascular diseases.  相似文献   

19.
Long chain acyl-CoA synthetase (ACSL) is an enzyme that activates fatty acids before they are further metabolized. ACSL6 is the one of main ACSL isoforms exclusively expressed in skeletal muscle, but the consequences of the suppression of this gene in systemic glucose homeostasis has yet to be reported. Hence, we investigated the roles of ACSL6 gene in glucose tolerance and TAG distribution in physiological conditions. Eight-week-old male C57BL/6J mice were administered with control or Acsl6 siRNAs and then fed with either AIN-93 control diet or high fat diet. At seven days after the first siRNA injection, oral glucose tolerance tests and TAG quantification were performed. In vivo administration of Acsl6 siRNA decreased Acsl6 expression only in skeletal muscle under AIN-93 or a high fat diet. However Acsl6 siRNA injection to animals increased TAG accumulation in the liver without the change of Acsl6 expression. Atelocollagen mediated Acsl6 suppression enhanced whole-body glucose tolerance coinciding with decreased TAG accumulation in skeletal muscle of mice fed an AIN-93 diet. However, the improved glucose tolerance by Acsl6 reduction was ablated by high fat diet. Moreover reduced Acsl6 did not alter the phosphorylation of insulin signaling proteins in skeletal muscle. These results suggest that Acsl6 reduction in skeletal muscle enhances glucose homeostasis and dissociates the insulin responses from TAG accumulation in skeletal muscle.  相似文献   

20.
Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH) can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C), daily injections of rapamycin alone (RAPA) or in combination with GH (RGH) at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3β, increase of glycogen deposits and stabilization of β-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号