共查询到20条相似文献,搜索用时 0 毫秒
1.
Metmyoglobin (Mb) was glycated by glucose in a nonenzymatic in vitro reaction. Amount of iron release from the heme pocket of myoglobin was found to be directly related with the extent of glycation. After in vitro glycation, the unchanged Mb and glycated myoglobin (GMb) were separated by ion exchange (BioRex 70) chromatography, which eliminated free iron from the protein fractions. Separated fractions of Mb and GMb were converted to their oxy forms -MbO2 and GMbO2, respectively. H2O2-induced iron release was significantly higher from GMbO2 than that from MbO2. This free iron, acting as a Fenton reagent, might produce free radicals and degrade different cell constituents. To verify this possibility, degradation of different cell constituents catalyzed by these fractions in the presence of H2O2 was studied. GMbO2 degraded arachidonic acid, deoxyribose and plasmid DNA more efficiently than MbO2. Arachidonic acid peroxidation and deoxyribose degradation were significantly inhibited by desferrioxamine (DFO), mannitol and catalase. However, besides free iron-mediated free radical reactions, role of iron of higher oxidation states, formed during interaction of H2O2 with myoglobin might also be involved in oxidative degradation processes. Formation of carbonyl content, an index of oxidative stress, was higher by GMbO2. Compared to MbO2, GMbO2 was rapidly auto-oxidized and co-oxidized with nitroblue tetrazolium, indicating increased rate of Mb and superoxide radical formation in GMbO2. GMb exhibited more peroxidase activity than Mb, which was positively correlated with ferrylmyoglobin formation in the presence of H2O2. These findings correlate glycation-induced modification of myoglobin and a mechanism of increased formation of free radicals. Although myoglobin glycation is not significant within muscle cells, free myoglobin in circulation, if becomes glycated, may pose a serious threat by eliciting oxidative stress, particularly in diabetic patients. 相似文献
2.
Jessica Tiedke Ceyda CubukThorsten Burmester 《Biochemical and biophysical research communications》2013
Animals in many aquatic ecosystems must cope with changing environmental parameters, such as temperature, oxygen availability or pH. We have investigated the molecular responses to acidification in the gills and body of zebrafish (Danio rerio) by means of quantitative real-time PCR. Expression levels of typical stress genes and genes for antioxidant defense were strongly enhanced in gills, and to lesser extents in the body, suggesting that acidification leads to oxidative stress. Surprisingly, the globins were found to be among the most prominent stress–responsive proteins in our study. Myoglobin showed the strongest response of all investigated genes in the gills, as confirmed by Western blotting. These findings agree with the role of globins in oxidative energy metabolism, but may also hint at a specific function in antioxidative defense. 相似文献
3.
Guanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold. First, it was to evaluate the susceptibility of ATP, GTP, CTP, and TTP to nonenzymatic modification by D-glucose and DL-glyceraldehyde, and second to assess the effect of various factors such as temperature, pH and incubation time, and sugar concentration on the rate and extent of nucleotide triphosphate AGE formation. Of the four nucleotide triphosphates that were studied, only GTP was significantly reactive forming a heterogeneous group of compounds with DL-glyceraldehyde. D-Glucose exhibited no significant reactivity with any of the nucleotide triphosphates, a finding that was supported by UV and fluorescence spectroscopy. Capillary electrophoresis, high-performance liquid chromatography and mass spectrometry allowed for a thorough analysis of the glycated GTP products and demonstrated that the modification of GTP by dl-glyceraldehyde occurred via the classical Amadori pathway. 相似文献
4.
Hyperglycemia-induced oxidative stress in diabetic complications 总被引:8,自引:3,他引:8
Reactive oxygen species are increased by hyperglycemia. Hyperglycemia, which occurs during diabetes (both type 1 and type 2) and, to a lesser extent, during insulin resistance, causes oxidative stress. Free fatty acids, which may be elevated during inadequate glycemic control, may also be contributory. In this review, we will discuss the role of oxidative stress in diabetic complications. Oxidative stress may be important in diabetes, not just because of its role in the development of complications, but because persistent hyperglycemia, secondary to insulin resistance, may induce oxidative stress and contribute to beta cell destruction in type 2 diabetes. The focus of this review will be on the role of oxidative stress in the etiology of diabetic complications. 相似文献
5.
The eye is a unique organ because of its constant exposure to radiation, atmospheric oxygen, environmental chemicals and physical abrasion. That oxidative stress mechanisms in ocular tissues have been hypothesized to play a role in diseases such as glaucoma, cataract, uveitis, retrolental fibroplasias, age-related macular degeneration and various forms of retinopathy provides an opportunity for new approaches to their prevention and treatment, In the anterior uvea, both H2O2 and synthetic peroxides exert pharmacological/toxicological actions tissues of the anterior uvea especially on the sympathetic nerves and smooth muscles of the iris–ciliary bodies of several mammalian species. Effects produced by peroxides require the presence of trace amounts of extracellular calcium and the functional integrity of mitochondrial calcium stores. Arachidonic acid metabolites appear to be involved in both the excitatory action of peroxides on sympathetic neurotransmission and their inhibitory effect on contractility of the iris smooth muscle to muscarinic receptor activation. In addition to the peroxides, isoprostanes (products of free radical catalyzed peroxidation of arachidonic acid independent of the cyclo-oxygenase enzyme) can also alter sympathetic neurotransmission in anterior uveal tissues. In the retina, both H2O2 and synthetic peroxides produced an inhibitory action on potassium depolarization induced release of [3H] d-aspartate, in vitro and on the endogenous glutamate and glycine concentrations in vivo. Effects caused by peroxides in the retina are mediated, at least in part, by second messengers such as nitric oxide, prostaglandins and isoprostanes. The ability of H2O2 to alter the integrity of neurotransmitter pools from sympathetic nerves in the anterior uvea and glutaminergic nerves in the retina could underlie its role in the etiology of glaucoma. 相似文献
6.
7.
Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer's disease 总被引:3,自引:0,他引:3
It has been widely accepted that vascular hypoperfusion induces oxidative stress and the outcome of this misbalance is brain energy failure. This abnormality leads to neuronal death which manifests as cognitive impairment and the development of brain pathology as in Alzheimer's disease (AD). It has been demonstrated that the AD brain is characterized by impairments in energy metabolism. We theorize that hypoperfusion induced mitochondrial failure plays a key role in the generation of reactive oxygen species, resulting in oxidative damage to brain cellular compartments, especially in the vascular endothelium and in selective population of neurons with high metabolic activity in the AD brain. All of these abnormalities have been found to occur before classic AD pathology inducing neuronal degeneration and amyloid deposition during the progression of AD. Therefore, expanding investigations into both the mechanisms behind amyloid beta (Abeta) deposition and the possible accelerating effects of environmental factors such as chronic hypoxia/reperfusion may open a new avenue for effective treatments of AD. Future studies examining the importance of mitochondrial pathobiology in brain cellular compartments provide insight not only into the better understanding of the neurodegenerative and/or cerebrovascular disease but also provide targets for treating these conditions. 相似文献
8.
Young Woo Kim Sung Min Lee Sang Mi Shin Se Jin Hwang Janie S. Brooks Hee Eun Kang Myung Gull Lee Sang Chan Kim Sang Geon Kim 《Free radical biology & medicine》2009,47(7):1082-1092
Iron-overload disorders cause hepatocyte injury and inflammation by oxidative stress, possibly leading to liver fibrosis and hepatocellular carcinoma. This study investigated the efficacy of sauchinone, a bioactive lignan, in preventing iron-induced liver injury and explored the mechanism of sauchinone's activity. To create iron overload, mice were injected with phenylhydrazine, and the effects on hepatic iron and histopathology were assessed. Phenylhydrazine treatment promoted liver iron accumulation and ferritin expression, causing hepatocyte death and increased plasma arachidonic acid (AA). Sauchinone attenuated liver injury (EC50 = 10 mg/kg) and activated AMPK in mice. Treatment of hepatocytes with iron and AA simulated iron overload conditions: iron + AA synergistically amplified cytotoxicity, increasing H2O2 and the mitochondrial permeability transition. Sauchinone protected hepatocytes from iron + AA-induced cytotoxicity, preventing the induction of mitochondrial dysfunction and apoptosis (EC50 = 1 μM), similar to the result using metformin. Sauchinone treatment activated LKB1, which led to AMPK activation: these events contributed to cell survival. Evidence of cytoprotection by LKB1 and AMPK activation was revealed in the reversal of sauchinone's restoration of the mitochondrial membrane potential by either dominant negative mutant AMPKα or chemical inhibitor. In conclusion, sauchinone protects the liver from toxicity induced by iron accumulation, and sauchinone's effects may be mediated by LKB1-dependent AMPK activation. 相似文献
9.
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress. 相似文献
10.
Witting PK Liao WQ Matthew J Harris Neuzil J 《Biochemical and biophysical research communications》2006,348(2):485-493
Hydrogen peroxide (H2O2) is implicated in cardiac myocyte (CM) damage during myocardial ischemia-reperfusion (IR) injury. Myoglobin (Mb) is present in CM at significant concentrations and reacts with H2O2 to yield one- and two-electron oxidants that may promote myocardial injury. Paradoxically, hearts from mice lacking Mb are more susceptible to H2O2-induced dysfunction than the corresponding controls [U. Flogel, A. Godecke, L.O. Klotz, J. Schrader, Role of myoglobin in the anti-oxidant defense of the heart, FASEB J. 18 (2004) 1156-1158]. We have overexpressed wild-type or Y103F variant of human Mb in cultured CMs to test whether Mb protects against H2O2 insult. Contrary to expectation, cells expressing WT or the Y103F Mb show increased mitochondrial dysfunction and apoptosis, and decreased ATP in response to H2O2 that follows the order native < Y103F Mb < WT human Mb consistent with the increasing pro-oxidant activity for these proteins. These data indicate that (i) Mb promotes oxidative damage to cultured CM and (ii) Mb may be a useful target for the design of inhibitors of myocardial IR injury. 相似文献
11.
The rate of reaction of glyceraldehyde with a series of peptides was found to be dependent on their amino acid composition, sequence, and chain length. The presence of a histidine near the NH2-terminal increased the rate of glycation, whereas the presence of a carboxyl group near the reaction site led to a decrease in reaction rate. In general, tripeptides reacted faster than dipeptides, and dipeptides reacted faster than amino acids. Sodium phosphate and 2,3-diphosphoglycerate enhanced the rate of reaction of glyceraldehyde with all the dipeptides tested. Sodium chloride inhibited the reaction in phosphate buffer, but not in HEPES buffer. The NH2-terminal heptapeptide from the -chain of human hemoglobin A (HbA), where histidine is the second residue, reacted with glyceraldehyde faster than the NH2-terminal hexapeptide from the -chain. The glycation of tetrameric human Hb by glyceraldehyde was found to be dependent on the ligation state of the protein since deoxy-HbA reacted about 50% more with glyceraldehyde than did liganded HbA. The enhanced glycation of deoxy HbA was mainly attributable to the more extensive reaction at the NH2-terminal of the -chain. The presence of a histidine adjacent to the NH2-terminal at this site may facilitate the Amadori rearrangement. The glycation of horse Hb in which the second residue is glutamine was not increased under anaerobic conditions. 相似文献
12.
Tsahar E Arad Z Izhaki I Guglielmo CG 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2006,176(7):653-661
Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds. 相似文献
13.
14.
Reflectance spectroscopy was utilized to monitor the oxidation states of myoglobin (Mb) in isolated, buffer-perfused rat hearts. Hearts were subjected to 30 min global, no-flow ischemia, followed by reperfusion under anoxic conditions. The addition of Na2S to the buffer at reperfusion permitted the detection of ferryl myoglobin (MbIV) as its sulfmyoglobin derivative. The accumulation of MbIV was prevented by addition of ascorbic acid (1 mM), ergothioneine (2mM), or desferal (1mM) to the buffer prior to ischemia. Ascorbate and other agents have been previously shown to serve as one-electron reductants of MbIV. We propose that during the early phases of ischemia, deoxymyoglobin is oxidized to MbIV by residual H2O2. It also seems reasonable that the peroxidative activity of Mb(IV), during oxygenated reperfusion, might lead to cellular damage if this hypervalent form of Mb is not reduced. 相似文献
15.
Kulsoom Zahra Sandeep Patel Tulika Dey Uma Pandey Surendra Pratap Mishra 《Biochemistry and Biophysics Reports》2021
Cervical cancer is the second most common cause of cancer-related death among women worldwide, especially in developing countries. Oxidative stress has been associated with cervical cancer. Many studies demonstrated that the low level of antioxidants induces the production of free radicals that cause lipid peroxidation, DNA, and protein damage leading to mutations that favors malignant transformation. This is a case-control institutional study conducted to evaluate the level of oxidative stress in cervical cancer patients and the age-matched healthy controls. We measured level of TBARS expressed as MDA, activity of SOD and GSH level by the spectrophotometric method, and level of 8-OHdG was estimated using a competitive sandwich ELISA assay. Our results showed a significant increase in the level of lipid peroxidation in group IV when compared to the control, group II and group III (p < 0.001). The activity of SOD was also significantly higher in group IV when compared to the control group (p < 0.001), group II (p < 0.001), and group III (p < 0.001). The level of GSH was also significantly lower in group IV when compared to the control group (p < 0.01), group II (p < 0.01), and group III (p < 0.01). The level of 8-OHdG was significantly higher in group IV than in the other groups (p < 0.01). The results suggest that oxidative stress is involved in the pathogenesis of cervical cancer, which is demonstrated by an increased level of lipid peroxidation and higher levels of 8-OHdG and an altered antioxidant defense system. 相似文献
16.
Glycation-modified hemoglobin in diabetes mellitus has been suggested to be a source of enhanced catalytic iron and free radicals causing pathological complications. The present study aims to verify this idea in experimental diabetes. Pelargonidin, an anthocyanidin, has been tested for its antidiabetic potential with emphasis on its role against pathological oxidative stress including hemoglobin-mediated free radical reactions. Male wistar rats were grouped as normal control, streptozotocin-induced diabetic control, normal treated with pelargonidin and diabetic treated with pelargonidin. Pelargonidin-treated rats received one time i.p injection of the flavonoid (3 mg/kg bodyweight). Biochemical parameters were assayed in blood samples of different groups of rats. Liver was used for histological examinations. Pelargonidin treatment normalized elevated blood glucose levels and improved serum insulin levels in diabetic rats. Glucose tolerance test appeared normal after treatment. Decreased serum levels of SOD and catalase, and increased levels of malondialdehyde and fructosamine in diabetic rats were reverted to their respective normal values after pelargonidin administration. Extents of hemoglobin glycation, hemoglobin-mediated iron release, iron-mediated free radical reactions and carbonyl formation in hemoglobin were pronounced in diabetic rats, indicating association between hemoglobin glycation and oxidative stress in diabetes. Pelargonidin counteracts hemoglobin glycation, iron release from the heme protein and iron-mediated oxidative damages, confirming glycated hemoglobin-associated oxidative stress in diabetes. 相似文献
17.
Carotenoids modulate the trade-off between egg production and resistance to oxidative stress in zebra finches 总被引:4,自引:0,他引:4
The allocation of resources to reproduction and survival is a central question of studies of life history evolution. Usually,
increased allocation to current reproduction is paid in terms of reduced future reproduction and/or decreased survival. However,
the proximal mechanisms underlying the cost of reproduction are poorly understood. Recently, it has been shown that increased
susceptibility to oxidative stress might be one of such proximate links between reproduction and self-maintenance. Organisms
possess a range of antioxidant defenses, including endogenously produced molecules (e.g., enzymes) and compounds ingested
with food (e.g., carotenoids). If reproductive effort increases the production of reactive oxygen species, the availability
of antioxidant defenses may partly or fully counteract the free-radical damages. One could, therefore, expect that the trade-off
between reproduction and oxidative stress is modulated by the availability of antioxidant defenses. We tested this hypothesis
in zebra finches. We manipulated reproductive effort by either allowing or preventing pairs to breed. Within each breeding
or non-breeding group, the availability of antioxidant compounds was manipulated by supplementing or not supplementing the
drinking water with carotenoids. We found that although birds in the breeding and non-breeding groups did not differ in their
resistance to oxidative stress (the breakdown of red blood cells submitted to a controlled free-radical attack), one aspect
of breeding effort (i.e., the number of eggs laid by birds in both breeding and non-breeding groups) was negatively correlated
with resistance to oxidative stress only in birds that did not benefit from a carotenoid-supplemented diet. This result therefore
suggests that carotenoid availability can modulate the trade-off between reproduction and resistance to oxidative stress. 相似文献
18.
Masaki Kobayashi Shunsuke Hoshino Takuro Abe Naoyuki Okita Ryoma Tagawa Wataru Nagai Ryutaro Konno Yuki Suzuki Kazuhiro Furuya Natsumi Ishikawa Hitoshi Okado Misako Oku Machiko Iwamoto Yuri Miura Yuka Sudo Yoshikazu Higami 《Biochemical and biophysical research communications》2019,508(1):117-122
White adipose tissue (WAT) is not only the main tissue for energy storage but also an endocrine organ that secretes adipokines. Obesity is the most common metabolic disorder and is related to alterations in WAT characteristics, such as chronic inflammation and increasing oxidative stress. WW domain containing E3 ubiquitin protein ligase 1 (WWP1) is a HECT-type ubiquitin E3 ligase that has been implicated in various pathologies. In the present study, we found that WWP1 was upregulated in obese WAT in a p53-dependent manner. To investigate the functions of WWP1 in adipocytes, a proteome analysis of WWP1 overexpression (OE) and knockdown (KD) 3T3-L1 cells was performed. This analysis showed a positive correlation between WWP1 expression and the abundance of several antioxidative proteins. Thus, we measured reactive oxygen species (ROS) in WWP1 OE and KD cells. Consistent with the proteome results, WWP1 OE reduced ROS levels, whereas KD increased them. These findings indicate that WWP1 is an obesity-inducible E3 ubiquitin ligase that can protect against obesity-associated oxidative stress in WAT. 相似文献
19.
Free trans-astaxanthin accumulated in the alga Chlorococcum sp. was markedly enhanced from 3.664 mg g−1 cell dry weight to 5.724 mg g−1 cell dry weight when the culture was supplemented with hydrogen peroxide (0.1 mM) under mixotrophic conditions of growth. After saponification, a total of 7.086 mg astaxanthin per g cell dry weight was achieved. Similarly, in heterotrophic cultures, the total astaxanthin content was increased from 1.034 mg g−1 cell dry weight without H2O2 to 1.782 mg g−1 cell dry weight with 0.1mM H2O2. Results indicate that hydrogen peroxide effectively induces the formation of free trans-astaxanthin in Chlorococcum sp. 相似文献