首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pituitary homogenates (FPH) provoke a cascade of responses in the amphibian ovarian follicle, culminating in progesterone biosynthesis and oocyte maturation (GVBD). Calcium may play an important role as an intracellular second messenger in regulating these physiological responses. Experiments were carried out on cultured, isolated follicles of Rana pipiens to assess the effects of varying extracellular calcium on follicular progesterone accumulation and oocyte maturation. In hormonally unstimulated follicles, an increase in extracellular Ca2+ alone produced a significant increase in progesterone in methanol extracts of follicles after 4 hours of culture, and in some cases also provoked oocyte maturation assessed after 24 hours of culture. In no case did elevated Ca2+ alone stimulate maximal progesterone accumulation as compared with FPH-stimulated follicles, although the time-course of accumulation was similar. The calcium ionophore, A-23187, similarly increased progesterone accumulation in a dose-dependent manner when introduced in amphibian Ringer's (1.35 mM Ca2+), but inhibited progesterone elevation caused by increasing calcium concentrations in the culture media and FPH stimulation. Depleting free calcium from the culture medium with graded doses of the chelator EGTA decreased FPH-induced progesterone accumulation and inhibited FPH- and progesterone-induced GVBD. The calcium channel blocker, verapamil, also inhibited FPH-induced progesterone accumulation and GVDB in a dose-dependent manner, while having no effect on progesterone-induced meiotic resumption. These data strongly implicate intracellular calcium levels regulating progesterone production by ovarian follicle cells and subsequent oocyte maturation.  相似文献   

2.
Potassium ion channels in the plasmalemma   总被引:2,自引:0,他引:2  
The potassium ion is an indispensible cytosolic component of living cells and a key osmolyte of plant cells, crossing the plasmalemma to drive physiological processes like cell growth and motor cell activity. K+ transport across the plasmalemma may be passive through channels, driven by the electrochemical gradient, K+ equilibrium potential (EK) – membrane potential (Vm), or secondary active by coupling through a carrier to the inward driving force of H+ or Na+. Known K+ channels are permeable to monovalent cations, a permeability order being K+ > Rb+ > NH4+ > Na+≥ Li+ > Cs+. The macroscopic K+ currents across a cell or protoplast surface commonly show rectification, i.e. a Vm-dependent conductance which in turn, may be controlled by the cytosolic activity of Ca2+, of K+, of H+, or by the K+ driving force. Analysis by the patch clamp technique reveals that plant K+ channels are similar to animal channels in their single channel conductance (4 to 100 pS), but different in that a given channel population slowly activates and may not inactivate at all. Single-channel kinetics reveal a broad range of open times (ms to s) and closed times (up to 100 s). Further progress in elucidating plant K+ channels will critically depend on molecular cloning, and the availability of channel-specific (phyto)toxins.  相似文献   

3.
Involvement of different cellular investments of the amphibian ovarian follicle wall in the ovulatory process, progesterone production, and oocyte maturation was investigated. Following microdissection, to selectively remove one or more layers (surface epithelium, theca, follicle cells) of the follicle wall, dissected and undirected ovarian follicles were treated with frog pituitary homogenate (FPH) or progesterone. Intact follicles ovulated in response to pituitary homogenate and this was associated with contractions of the follicle wall. Ovulation and follicular contractions were not observed following removal of the surface epithelium without removing the thecal layer. Oocyte maturation occured in response to FPH following removal of the surface epithelium alone or together with the theca, but not in the absence of the follicle cells. Intact follicles were most responsive to FPH with respect to progesterone production, and removal of all somatic cells from oocytes obliterated FPH stimulated progesterone production. Oocytes, regardless of wether any or all follicular wall layers were removed, matured but did not ovulate following exposure to progesterone. The results suggest that the surface epithelium, but not the theca, is required for FPH-induced extrusion (ovulation) of the oocyte from ovarian follicle wall. Additionally, the somatic tissue rather than the oocyte appears to be the cells producing progesterone following FPH treatment. The results indicate that separate cellular layers (individually and/or as a result of interactions) of the follicle wall carry out different functions during follicular differentiation and mediation of ovulation. Data provide functional evidence for a role of the surface epithelium in controlling the process of ovulation and follicular contraction.  相似文献   

4.
The role of cAMP in regulating follicular progesterone levels and oocyte maturation was investigated following in vitro culture of amphibian (Rana pipiens) ovarian follicles. Intrafollicular levels of cAMP were manipulated with the use of a stimulator of cAMP synthesis (forskolin) or by exogenous addition of cAMP alone or either of these in combination with an inhibitor of cAMP catabolism (3-isobutyl-1-methyl xanthine, IBMX). Follicular progesterone content was determined by RIA and oocyte maturation was assessed cytologically. In the presence of increasing doses of forskolin (0-3 microM), cAMP (0-3 mM), or dibutyryl cAMP (dbcAMP, 0-2.5 mM) increasing but low levels of progesterone were detected. Increasing doses of IBMX (0-0.09 mM) alone had no significant effect on follicular steroid content. Exogenous cAMP, dbcAMP, or IBMX (0.09 mM) suppressed hormone-induced oocyte maturation. Simultaneous exposure of follicles to increasing doses of both forskolin (0-3 microM) and IBMX (0-0.09 mM) markedly increased intrafollicular progesterone levels to those produced by frog pituitary homogenate (FPH). A marked increase in progesterone levels also occurred when follicles were exposed to exogenous cAMP (3 mM) and IBMX (0.09 mM). These results indicate that exogenous cAMP is incorporated by follicle cells and that forskolin effects are mediated through cAMP. Changes in follicular progesterone levels (increase and decrease) over time following FPH or cAMP manipulation (cAMP + IBMX or forskolin + IBMX) were essentially identical. In contrast to cAMP, cGMP was inactive in inhibiting hormone induced GVBD or stimulating follicular progesterone accumulation. Elevation of follicular and medium levels of progesterone resulting from FPH or cAMP stimulation required the presence of the somatic follicular cells. The decrease in follicular progesterone levels with prolonged culture was not associated with a corresponding increase in progesterone levels in the medium. The decrease in follicular progesterone levels appears to reflect steroid catabolism rather than loss of steroid to the culture medium. The results suggest that the level of intracellular cAMP in the follicle cells is modulated by the relative activity of the adenylate cyclase system and phosphodiesterase and that FPH can affect both components. Thus, intracellular levels of cAMP play a key role in regulating follicular progesterone levels and FPH action on the follicle cells. The steroidogenic capacity of follicle cells can be manipulated independently of FPH stimulation.  相似文献   

5.
Abstract: The action of arachidonic acid and other fatty acids on membrane potential in PC 12 and bovine chromaffin cells was investigated using a membrane potential-sensitive fluorescent dye. Arachidonic acid (1–40 μ M ) provoked dose-dependent membrane hyperpolarization, thereby reducing hyperpolarization induced by the K+-selective ionophore valinomycin. Other cis-unsaturated fatty acids, but not lipoxygenase products or the saturated fatty acid palmitic acid, also affected membrane potential. Tetraethylammonium blocked the arachidonic acid-induced hyperpolarization. These data suggest that cis-unsaturated fatty acids alter membrane potential in PC 12 and bovine chromaffin cells by modulating K+ conductances. Valinomycin-generated hyperpolarization had no effect on agonist-induced Ca2+ influx into bovine chromaffin cells, whereas preincubation with arachidonic acid and other cis-unsaturated fatty acids blocked Ca2+ influx and secretion. We propose a model where internally generated fatty acids act as a feed-back to desensitize the stimulated cell via inhibition of receptor-dependent Ca2+ influx and induction of membrane hyperpolarization.  相似文献   

6.
In ovarian follicles of Rana pipiens, frog pituitary homogenates (FPH) elevate intrafollicular progesterone levels which in turn is thought to induce meiotic resumption in the prophase I arrested oocytes. Calcium plays a role in FPH and steroid-provoked responses in the somatic and gametic components of the follicle, presumably via effects exerted at the plasma membrane of their respective target cells. Many membrane active hormones which utilize Ca2+ in their intracellular transduction also provoke membrane phosphoinositide hydrolysis yielding inositol triphosphate (IP3) and diacyl glycerol (DAG), an activator of the CA2+-dependent protein kinase C (PKC). The actions of phorbol 12-myristate 13-acetate (TPA), a potent synthetic activator of PKC, on progesterone production and oocyte maturation was examined in in vitro cultured ovarian follicles. TPA induced germinal vesicle breakdown (GVBD) in intact follicles and in oocytes denuded of somatic components, while the inactive compound phorbol 13-monoacetate was ineffective. Further, TPA induction of GVBD exhibited similarities to progesterone-induced GVBD, being inhibited by treatments which elevate cAMP or inhibit protein synthesis. TPA alone did not elevate intrafollicular or medium progesterone levels, as occurred in FPH-treated follicles. TPA partially inhibited intrafollicular progesterone accumulation induced by FPH or treatments which elevate cAMP levels. These data suggest that activation of PKC plays a role in oocyte maturation independent of follicular progesterone production as occurs in response to FPH. Further, it appears that the somatic cells of the amphibian follicle also possess PKC which when activated, antagonizes cAMP generating pathway in these cells. Results indicate that protein kinase can influence oocyte maturation in Rana follicular oocytes by several mechanisms.  相似文献   

7.
Previous studies have indicated that pituitary-initiated oocyte maturation in the amphibian is mediated by steroidogenesis in the somatic portion of the follicle. This study compares the ability of (1) oocytes surrounded by a single layer of follicle cells, (2) denuded oocytes, and (3) isolated follicle cells to metabolize Δ5-pregnenolone, the common precursor of the steroids. Use of radiolabeled compounds demonstrates that the conversion of Δ5-pregnenolone to progesterone is confined to the follicle cells, while further reduction of progesterone takes place in the oocyte. The follicle cells also convert Δ5-pregnenolone to a form more potent in inducing meiotic maturation. Thus, the behavior of follicle cells in isolation is consistent with the suggested site of pituitary action leading to meiotic maturation as proposed by an earlier theory.  相似文献   

8.
Transient exposure to ethanol (EtOH) results in a massive neurodegeneration in the developing brain leading to behavioral and cognitive deficits observed in fetal alcohol syndrome. There is now compelling evidence that K+ channels play an important role in the control of programmed cell death. The aim of the present work was to investigate the involvement of K+ channels in the EtOH-induced cerebellar granule cell death and/or survival. At low and high concentrations, EtOH evoked membrane depolarization and hyperpolarization, respectively. Bath perfusion of EtOH (10 mM) depressed the I A (transient K+ current) potassium current whereas EtOH (400 mM) provoked a marked potentiation of the specific I K (delayed rectifier K+ current) current. Pipette dialysis with GTPγS or GDPβS did not modify the effects of EtOH (400 mM) on both membrane potential and I K current. In contrast, the reversible depolarization and slowly recovering inhibition of I A induced by EtOH (10 mM) became irreversible in the presence of GTPγS. EtOH (400 mM) induced prodeath responses whereas EtOH (10 mM) and K+ channel blockers promoted cell survival. Altogether, these results indicate that in cerebellar granule cells, EtOH mediates a dual effect on K+ currents partly involved in the control of granule cell death.  相似文献   

9.
Treatment of isolated amphibian ovarian follicles with frog pituitary homogenate (FPH) increases follicular progesterone levels, which, in turn, initiate oocyte maturation. Recent studies have demonstrated that follicular progesterone production requires concomitant protein synthesis at some stage preceding pregnenolone formation. Experiments were carried out to determine whether cholesterol metabolism plays a role in mediating these biochemical and physiological processes. Aminoglutethimide (AGI, and inhibitor of P450 side-chain cleavage enzyme) inhibited FPH-induced intrafollicular progesterone accumulation and oocyte maturation (or germinal vesicle breakdown, GVBD) in a dose-dependent manner. Follicular progesterone accumulation and GVBD were both stimulated, in the absence of FPH, after addition of 25-OH-cholesterol, but not cholesterol, to the culture medium. Higher levels of progesterone were present in defolliculated oocytes as compared to intact ovarian follicles after incubation with 25-OH-cholesterol. The results indicate that the surface epithelium and theca layer in the follicle wall retard 25-OH-cholesterol access to steroid-producing follicle cells. AGI blocked 25-OH-cholesterol-induced accumulation of progesterone and GVBD in defolliculated oocytes, suggesting that 25-OH-cholesterol does not directly induce GVBD and is metabolized by the follicle cells. The capacity of follicles to accumulate progesterone following preincubation with FPH or 25-OH-cholesterol along with AGI was compared. Intrafollicular levels of progesterone increased after AGI- and 25-OH-cholesterol-treated follicles were washed. In contrast, progesterone levels decreased in follicles pretreated with AGI and FPH after washing. The results indicate that considerable 25-OH-cholesterol, but not endogenous cholesterol (FPH stimulation), remains available for steroidogenesis after removal of AGI. A significant, but incomplete, inhibition of progesterone accumulation occurred when follicles were incubated in the presence of 25-OH-cholesterol and cycloheximide. This partial blockage produced by the protein synthesis inhibitor indicates that some basal protein synthesis is required for progesterone accumulation from exogenous 25-OH-cholesterol. We conclude that intracellular cholesterol stores in the follicle wall are utilized to mediate FPH induction of progesterone accumulation and oocyte maturation in amphibian follicles.  相似文献   

10.
The ultrastructural localization of calcium in full-grown ovarian follicles of Xenopus laevis was demonstrated after fixation in the presence of fluoride ions and by means of energy dispersive X-ray microanalysis. In hormonally untreated follicles (prophase I-arrested oocytes), two calcium sites were detected: follicle cells and oocyte pigment granules. In follicle cells, calcium containing deposits were preferentially associated with macrovilli, which ended by gap junctions. In human chorionic gonadotropin treated follicles (meiotically reinitiated oocytes), deposits were only seen in follicle cells. This is the first report of the cytochemical detection of intracellular Ca2+ in follicle cells of amphibians. The possible involvements of these Ca2+ stores in mediating the hormonal control of meiotic maturation are discussed.  相似文献   

11.
In the amphibian ovarian follicle, progesterone production is thought to induce maturation of the enclosed oocyte. Intracellular mechanisms regulating these events in the somatic and germ cells are incompletely understood. However, calcium appears to play a role in the production and action of progesterone. Experiments using calcium antagonists were carried out to delineate the role of extra- and intracellular calcium during in vitro stimulation of follicular steroidogenesis and oocyte maturation. Calcium-free medium, verapamil, and La3+ were used to block Ca2+ influx and inhibited follicular progesterone accumulation in response to frog pituitary homogenate (FPH) or exogenous cAMP + IBMX. Progesterone accumulation was not impaired under identical conditions when pregnenolone was added to cultured follicles. TMB-8, an inhibitor of intracellular Ca2+ mobilization, partially inhibited progesterone levels stimulated by FPH at low doses but not higher doses of the inhibitor. However, TMB-8 inhibited FPH-induced oocyte germinal vesicle breakdown (GVBD) in a dose-dependent manner, as well as maturation due to exogenous progesterone or La3+. Calmodulin antagonists, W-7, R24571, and trifluoperazine, were used to assess the involvement of calmodulin in the responses of these two cell types. All three antagonists inhibited progesterone accumulation induced by FPH with the apparent order of potency being R24571 greater than W-7 greater than TFP. W-7 inhibited cAMP-induced progesterone elevation, but had no effect on conversion of pregnenolone to progesterone. Of these three calmodulin antagonists, only R24571 exhibited a dramatic ability to inhibit GVBD induced by exogenous progesterone and was associated with morphologic alterations in the oocytes. These data suggest that Ca2+, acting through calmodulin at some specific step(s) distal to cAMP elevation and prior to pregnenolone formation, is involved in FPH-induced progesterone accumulation, apparently with the participation of both extracellular and intracellular pools of Ca2+. In the oocyte, mobilization of Ca2+ from intracellular stores appears to be of primary importance to maturation while extracellular Ca2+ is not. These data provide further evidence that Ca2+ mediates the hormonally provoked responses in both cell types in the intact follicle, but that the source of Ca2+ may differ. Using intact follicles it seems apparent that exploiting this difference with selective inhibitors provides a means for differential modulation and functional uncoupling of these cells with regard to steroidogenesis and steroid action.  相似文献   

12.
A transient increase in intracellular Ca2+ upon maturation in starfish oocyte was revealed by light emission of aequorin microinjected into the cell. One minute application of 1-methyladenine (1-MeAde) to a limited area of the oocyte surface was sufficient to induce the Ca2+ transient over the entire cell though it did not induce the germinal vesicle breakdown (GVBD). Ten minutes application of 1-MeAde induced a similar Ca2+ transient followed by GVBD. Even when the transient increase of Ca2+ was inhibited by injecting EGTA into the oocyte, 1-MeAde treatment for a long period induced GVBD. These facts indicate that the Ca2+ increase is neither necessary nor sufficient for maturation of the starfish oocyte.
When the oocyte, which had been treated with 1-MeAde for 1 min at a limited area around the animal pole, was treated again with 1-MeAde for 10 min starting about 15 min after the first treatment, a Ca2+ transient similar to the first one was induced and was followed by GVBD. By contrast, in the oocyte treated with 1-MeAde at an area around the vegetal pole, neither Ca2+ transient nor GVBD was induced by the second treatment with 1-MeAde. These results indicate a difference in responsiveness to the hormone between the animal hemisphere and the vegetal hemisphere of the oocyte.  相似文献   

13.
We previously reported that protein kinase C (PKC) activation induced meiotic maturation (germinal vesicle breakdown, GVBD) of Rana dybowskii follicular oocytes cultured in vitro without hormone treatment. The experiments reported here were carried out to establish whether ovarian follicles ovulated in response to PKC activation during culture. A phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), was used for PKC activation. TPA addition (10 microM) to cultured ovarian fragments induced ovulation and maturation of the oocytes similar to that seen following addition of frog pituitary homogenate (FPH, 0.05 pituitary/ml) or progesterone (0.5 microgram/ml). Such changes were not observed when ovarian fragments were treated with inactive phorbol ester. The time course of TPA-induced ovulation was similar to that produced by FPH-stimulated ovulation. Both TPA- and FPH-stimulated ovulation and maturation were blocked by treatment with cycloheximide, forskolin (an adenylate cyclase stimulator), and 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7; a PKC inactivator). FPH treatment markedly increased progesterone levels in the medium during ovarian fragment culture whereas TPA treatment failed to elevate progesterone levels. Thus, TPA treatment mimics FPH and progesterone in inducing ovulation and meiotic maturation in cultured amphibian ovarian fragments. The data strongly suggest that PKC plays an important role in regulating ovulation as well as in modulating amphibian oocyte maturation during follicular differentiation.  相似文献   

14.
Abstract. Treatment with weak acids (butyrate, isobutyrate, trimethylacetate, DMO) at a concentration of I mol m−3 in apical maize root segments induced a rapid, marked hyperpolarization ( ca. 30 mV) of the transmembrane electrical potential, stable for at least 30 min. With butyrate, this effect increased with the increase of butyrate concentration in the medium, reaching a value of ca. 75 mV at a concentration of 5 mol m−3.
Both the butyrate uptake and the hyperpolarization were roughly proportional to the pH-regulated, undissociated/dissociated acid ratio in the medium. The butyrate-induced hyperpolarization was reduced progressively, but was still present when K+ concentration in the medium was raised from 1 to 10 mol m−3.
The hyperpolarization was accompanied by a significant increase of K+ uptake, and was almost completely suppressed by the presence of the protonophore carbonylcyanid- p -trichlorometoxy-phenylhydrazone (CCCP) and strongly reduced by erytrosin B, an inhibitor of some animal ATPases and of a K+-activated, DCCD- and vanadate-sensitive Mg2+-ATPase from plant microsomes. The hyperpolarization effect of butyrate was additive to that of fusicoccin at low, but not at high (5 mol m−3), concentrations of the weak acid. These results suggest that the intracellular pH regulates the activity of the electrogenic proton pump at the plasmalemma.  相似文献   

15.
We report for the first time that oocyte nuclear and cytoplasmic maturation are triggered in vitro in non-hormone-treated amphibian (Rana pipiens) ovarian follicles following transient exposure to synthetic chymotrypsin inhibitor Nα-tosyl-L-phenylalanine-chloromethyl ketone (TPCK). The mechanism of action of TPCK in regulating oocyte maturation was investigated and compared to that induced by progesterone or pituitary hormone. Follicular oocytes failed to mature following continuous exposure to the same doses of TPCK in the presence or absence of progesterone. Continuous treatment of follicles with lower levels of TPCK occasionally induced GVBD in the absence of progesterone and augmented maturational effects of low levels of progesterone. TPCK induced maturation of intrafollicular oocytes without stimulating progesterone production and also induced maturation of naked oocytes. Stimulation of follicular progesterone synthesis following gonadotropin stimulation or addition of pregnenolone was inhibited by TPCK, indicating that TPCK affects metabolic processes in both the somatic and germinal components of the ovarian follicle. Oocyte maturation induced by either TPCK or progesterone was inhibited by cycloheximide, calcium-deficient medium, and forskolin. Results suggest that TPCK induces oocyte maturation independent of steroidogenesis via mechanisms similar to those triggered by progesterone involving protein synthesis, formation of cytoplasmic maturation-promoting factor (MPF), and changes in cAMP levels. Our data indicate that a chymotrypsin-like protease plays a role(s) in regulating the oocyte meiotic maturation process.  相似文献   

16.
Previous studies have demonstrated that direct or indirect elevation of cAMP levels in cultured amphibian ovarian follicles simultaneously stimulated production of oocyte maturation-inducing steroid (progesterone) by the follicles and inhibited oocyte maturation induced by endogenous or exogenous hormone. The duration of cAMP stimulation influenced arrest and reinitiation of oocyte meiotic maturation in ovarian follicles of Rana dybowskii. Addition of forskolin (adenylate cyclase stimulator) to cultured follicles inhibited both progesterone- and frog pituitary homogenate (FPH)-induced oocyte maturation. Similar inhibitory results were obtained when hormone-treated follicles were cultured in the continual presence of cAMP. Oocyte maturation increasingly occurred in follicular oocytes when cAMP or forskolin addition was delayed following treatment with FPH or progesterone. Transient exposure (6-8 hr) of ovarian follicles to forskolin or cAMP markedly stimulated oocyte maturation as well as accumulation of progesterone as measured by radioimmunoassay within the ovarian follicles. Forskolin was more effective than cAMP, at the dose tested, in stimulating progesterone production and accumulation by the follicles. The data demonstrate that transient manipulation (elevation) of cAMP levels in cultured follicles, without added FPH or steroid, was sufficient to initiate oocyte maturation. Results suggest that, with transient exposure to forskolin or exogenous cAMP, there is a sequential increase and decrease in endogenous cAMP levels in the somatic cells and germ cell components of the ovarian follicle. These changes appear to mediate production of maturation-inducing steroid and secondarily allow its effects on the oocyte to be expressed.  相似文献   

17.
Potassium ions (K+) are required for plant growth and development, including cell division and cell elongation/expansion, which are mediated by the K+ transport system. In this study, we investigated the role of K+ in cell division using tobacco BY-2 protoplast cultures. Gene expression analysis revealed induction of the Shaker -like outward K+ channel gene, NTORK1 , under cell-division conditions, whereas the inward K+ channel genes NKT1 and NtKC1 were induced under both cell-elongation and cell-division conditions. Repression of NTORK1 gene expression by expression of its antisense construct repressed cell division but accelerated cell elongation even under conditions promoting cell division. A decrease in the K+ content of cells and cellular osmotic pressure in dividing cells suggested that an increase in cell osmotic pressure by K+ uptake is not required for cell division. In contrast, K+ depletion, which reduced cell-division activity, decreased cytoplasmic pH as monitored using a fluorescent pH indicator, SNARF-1. Application of K+ or the cytoplasmic alkalizing reagent (NH4)2SO4 increased cytoplasmic pH and suppressed the reduction in cell-division activity. These results suggest that the K+ taken up into cells is used to regulate cytoplasmic pH during cell division.  相似文献   

18.
Intracellular concentrations of Na+ and K+ were similar (∼75 mmol l−1) in rainbow trout Oncorhynchus mykiss hepatocytes directly following isolation by collagenase digestion, but partial recovery occurred over 6 h with K+ levels increasing to 110 mmol l−1 and Na+ levels decreasing to 42 mmol l−1. Black bullhead Ameiurus melas hepatocytes exhibited higher intracellular concentrations of K+ (90 mmol l−1) than Na+ (55 mmol l−1) with no recovery occurring over 6 h following cell isolation. Concentrations of Na+, K+ and Cl in eel Anguilla rostrata hepatocytes were similar (∼ 55 mmol l−1) following isolation, with no recovery occurring over time. Erythrocytes from all species apparently did not experience an intracellular ion imbalance following isolation as indicated by high K+ levels (<140 mmol l−1) and low Na+ levels (<40 mmol l−1) during the entire 24-h monitoring period. Although hepatocytes from all species exhibited an ion imbalance post-isolation, comparison of their in vitro intracellular Na+ and K+ concentrations with those in plasma demonstrated that directionally correct ion gradients still exist across the cell membrane, albeit differing from those that would be found in the tissue in vivo .  相似文献   

19.
Trichlorfon (TCF), an organophosphate insecticide and potent inhibitor of choline esterases, was previously shown to induce first meiotic nondisjunction and spindle aberrations in isolated, follicle cell-denuded mouse oocytes maturing in vitro. To explore dose-response and direct and indirect, potentially synergistic effects of TCF on the somatic cells and the oocyte within a follicle, we presently employed preantral follicle culture. 100 microg/ml TCF added at the time of hormonally stimulated resumption of meiosis of follicle cell-enclosed mouse oocytes, 16 h before in vitro ovulation, induced significant rises in first meiotic nondisjunction in oocytes from preantral follicle culture. Lower concentrations (6 microg/ml TCF) disturbed polar body formation. Nuclear maturation to meiosis II in absence of cytokinesis resulted in significant increases in polyploidy. Oocytes maturing in follicles in the presence of TCF had aberrant second meiotic spindles. Influences of TCF on somatic cell function were evident by reduced follicular mucification in vitro and deceased progesterone production. In contrast to TCF, acetylcholine (0.1-100 microM) increased progesterone production. The observations therefore suggest that TCF influences oocyte maturation and folliculogenesis directly and indirectly. High TCF is aneugenic at first meiotic division in oocytes, irrespective of the presence or absence of follicle cells. At lower concentrations TCF interferes with spindle formation, chromosome congression at meiosis II, and coordination of nuclear and cytoplasmic maturation, posing risks for second meiotic errors. The observations suggest that chronic TCF exposure during maturation in the follicle may predispose oocytes to the formation of chromosomally unbalanced preimplantation embryos after fertilization.  相似文献   

20.
Abstract. Accumulation of the lipophilic cation tri-phenylmethylphosphonium (TPMP+) has been used to estimate the plasmalemma potential (Φm) of Porphyra purpurea (Rhodophyta, Bangiales) and Ulva lactuca (Chlorophyta, Ulvales). Values of Φm obtained using the Nernst equation were −61 mV and −54 mV respectively; these values compare well with those obtained using glass microelectrodes. A trend of hyperpolarization of Φm in P. purpurea was observed with decreasing external salinity. This hyperpolarization was shown to be primarily due to changes in external K+ concentration. Varying external Na+ concentration was found to have little effect on Φm. The present data suggest that the membrane potential of P. purpurea is not wholly due to a K+ diffusion potential, but may have an electrogenic component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号