首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Each of the two beta peptides which comprise the B2 protein of Escherichia coli ribonucleotide reductase (RRB2) possesses a nonheme dinuclear iron cluster and a tyrosine residue at position 122. The oxidized form of the protein contains all high spin ferric iron and 1.0-1.4 tyrosyl radicals per RRB2 protein. In order to define the stoichiometry of in vitro dioxygen reduction catalyzed by fully reduced RRB2 we have quantified the reactants and products in the aerobic addition of Fe(II) to metal-free RRB2apo utilizing an oxygraph to quantify oxygen consumption, electron paramagnetic resonance to measure tyrosine radical generation, and M?ssbauer spectroscopy to determine the extent of iron oxidation. Our data indicate that 3.1 Fe(II) and 0.8 Tyr122 are oxidized per mol of O2 reduced. M?ssbauer experiments indicate that less than 8% of the iron is bound as mononuclear high spin Fe(III). Further, the aerobic addition of substoichiometric amounts of 57Fe to RRB2apo consistently produces dinuclear clusters, rather than mononuclear Fe(III) species, providing the first direct spectroscopic evidence for the preferential formation of the dinuclear units at the active site. These stoichiometry studies were extended to include the phenylalanine mutant protein (Y122F)RRB2 and show that 3.9 mol-equivalents of Fe(II) are oxidized per mol of O2 consumed. Our stoichiometry data has led us to propose a model for dioxygen activation catalyzed by RRB2 which invokes electron transfer between iron clusters.  相似文献   

2.
The R2 dimer of mouse ribonucleotide reductase contains a dinuclear iron-oxygen cluster and tyrosyl radical/subunit. The dinuclear diferrous form reacts with dioxygen to generate the tyrosyl radical essential for the catalytic reaction that occurs at the R1 dimer. It is important to understand how the reactivity toward oxygen is related to the crystal structure of the dinuclear cluster. For the mouse R2 protein, no structure has been available with a fully occupied dinuclear metal ion site. A cobalt substitution of mouse R2 was performed to produce a good model for the very air-sensitive diferrous form of the enzyme. X-band EPR and light absorption studies (epsilon(550 nm) = 100 mm(-1) cm(-1)/Co(II)) revealed a strong cooperative binding of cobalt to the dinuclear site. In perpendicular mode EPR, the axial signal from mouse R2 incubated with Co(II) showed a typical S = 3/2 Co(II) signal, and its low intensity indicated that the majority of the Co(II) bound to R2 is magnetically coupled. In parallel mode EPR, a typical integer spin signal (M(s) = +/-3) with g approximately 12 is observed at 3.6 K and 10 K, showing that the two Co(II) ions (S = 3/2) in the dinuclear site are ferromagnetically coupled. We have solved the 2.4 A crystal structure of the Co(II)-substituted R2 with a fully occupied dinuclear cluster. The bridging Co(II) carboxylate ligand Glu-267 adopts an altered orientation compared with its counterpart Glu-238 in Escherichia coli R2. This might be important for proper O(2) activation of the more exposed native diferrous site in mouse R2 compared with E. coli R2.  相似文献   

3.
The active form of protein B2, the small subunit of ribonucleotide reductase from Escherichia coli, contains a binuclear ferric center and a free radical localized to tyrosine 122 of the polypeptide chain. MetB2 is an inactive form that lacks the tyrosine radical but retains the Fe(III) center. We earlier reported (Fontecave, M., Eliasson, R., and Reichard, P. (1989) J. Biol. Chem. 264, 9164-9170) that enzymes from E. coli interconvert B2 and metB2, possibly as part of a regulatory mechanism. Introduction of the tyrosyl radical into metB2 occurred in two steps: first, the Fe(III) center was reduced to Fe(II), generating "reduced B2"; next oxygen regenerated non-enzymatically both Fe(III) and the tyrosyl radical. Here we demonstrate that dithiothreitol (DTT) between pH 8 and 9.5 also slowly converts metB2 to B2 in the presence of oxygen. Also in this case the reaction occurs stepwise with reduced B2 as an intermediate. DTT reduces Fe(III) of both metB2 and B2. In the latter case this reaction is accompanied by the immediate loss of the tyrosyl radical. Our results indicate that the tyrosyl radical can exist only in the presence of an intact Fe(III) center. In reduced B2 iron is loosely bound to the protein, dissociates on standing and is readily removed by chelating agents. Binding decreases at higher pH. Loss of iron from reduced B2 explains why ferrous iron stimulates and iron chelators inhibit reactivation of metB2. We propose that the reactivation of mammalian ribonucleotide reductase by DTT (Thelander, M., Gr?slund, A., and Thelander, L. (1983) Biochem. Biophys. Res. Commun. 110, 859-865) may proceed via a mechanism similar to the one found here for E. coli protein B2.  相似文献   

4.
Recombinant H chain ferritins bearing site-directed amino acid substitutions at their ferroxidase centres have been used to study the mechanism of catalysis of Fe(II) oxidation by this protein. UV-difference spectra have been obtained at various times after the aerobic addition of Fe(II) to the recombinants. These indicate that the first product of Fe(II) oxidation by wild type H chain apoferritin is an Fe(III) mu-oxo-bridged dimer. This suggests that fast oxidation is achieved by 2-electron transfer from two Fe(II) to dioxygen. Modelling of Fe(III) dimer binding to human H chain apoferritin shows a solvent-accessible site, which resembles that of ribonucleotide reductase in its ligands. Substitution of these ligands by other amino acids usually prevents dimer formation and leads to greatly reduced Fe(II) oxidation rates.  相似文献   

5.
Stopped-flow absorption and freeze-quench electron paramagnetic resonance (EPR) and M?ssbauer spectroscopies have been used to obtain evidence for the intermediacy of a (mu-1,2-peroxo)diiron(III/III) complex on the pathway to the tyrosyl radical and (mu-oxo)diiron(III/III) cluster during assembly of the essential cofactor in the R2 subunit of ribonucleotide reductase from mouse. The complex accumulates to approximately 0.4 equiv in the first few milliseconds of the reaction and decays concomitantly with accumulation of the previously detected diiron(III/IV) cluster, X, which generates the tyrosyl radical and product (mu-oxo)diiron(III/III) cluster. Kinetic complexities in the reaction suggest the existence of an anti-cooperative interaction of the monomers of the R2 homodimer in Fe(II) binding and perhaps O2 activation. The detection of the (mu-1,2-peroxo)diiron(III/III) complex, which has spectroscopic properties similar to those of complexes previously characterized in the reactions of soluble methane monooxygenase, stearoyl acyl carrier protein Delta9 desaturase, and variants of Escherichia coli R2 with the iron ligand substitution, D84E, provides support for the hypothesis that the reactions of the diiron-carboxylate oxidases and oxygenases commence with the formation of this common intermediate.  相似文献   

6.
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.  相似文献   

7.
The kinetics and mechanism of formation of the tyrosyl radical and mu-(oxo)diiron(III) cluster in the R2 subunit of ribonucleotide reductase from mouse have been examined by stopped-flow absorption and freeze-quench electron paramagnetic resonance and M?ssbauer spectroscopies. The reaction comprises (1) acquisition of Fe(II) ions by the R2 apo protein, (2) activation of dioxygen at the resulting carboxylate-bridged diiron(II) cluster to form oxidized intermediate diiron species, and (3) univalent oxidation of Y177 by one of these intermediates to form the stable radical, with concomitant or subsequent formation of the adjacent mu-(oxo)diiron(III) cluster. The data establish that an oxidized diiron intermediate spectroscopically similar to the well-characterized, formally Fe(III)Fe(IV) cluster X from the reaction of the Escherichia coli R2 protein precedes the Y177 radical in the reaction sequence and is probably the Y177 oxidant. As formation of the X intermediate (1) requires transfer of an "extra" reducing equivalent to the buried diiron cluster following the addition of dioxygen and (2) is observed to be rapid relative to other steps in the reaction, the present data indicate that the transfer of this reducing equivalent is not rate-limiting for Y177 radical formation, in contrast to what was previously proposed (Schmidt, P. P., Rova, U., Katterle, B., Thelander, L., and Gr?slund, A. (1998) J. Biol. Chem. 273, 21463-21472). Indeed, the formation of X (k(obs) = 13 +/- 3 s(-1) at 5 degrees C and 0.95 mM O(2)) and the decay of the intermediate to give the Y177 radical (k(obs) = 5 +/- 2 s(-1)) are both considerably faster than the formation of the reactive Fe(II)-R2 complex from the apo protein and Fe(II)(aq) (k(obs) = 0.29 +/- 0.03 s(-1)), which is the slowest step overall. The conclusions that cluster X is an intermediate in Y177 radical formation and that transfer of the reducing equivalent is relatively facile imply that the mouse R2 and E. coli R2 reactions are mechanistically similar.  相似文献   

8.
Methane monooxygenase has been purified from the Type II methanotroph Methylosinus trichosporium OB3b. As observed for methane monooxygenase isolated from Type I methanotrophs, three protein components are required: a 39.7-kDa NADH reductase containing 1 mol each of FAD and a [2Fe-2S] cluster, a 15.8-kDa protein factor termed component B that contains no metals or cofactors, and a 245-kDa hydroxylase which appears to contain an oxo- or hydroxo-bridged binuclear iron cluster. Through the use of stabilizing reagents, the hydroxylase is obtained in high yield and exhibits a specific activity 8-25-fold greater than reported for previous preparations. The component B and reductase exhibit 1.5- and 4-fold greater specific activity, respectively. Quantitation of the hydroxylase oxo-bridged cluster using EPR and M?ssbauer spectroscopies reveals that the highest specific activity preparations (approximately 1700 nmol/min/mg) contain approximately 2 clusters/mol. In contrast, hydroxylase preparations exhibiting a wide range of specific activities below 500 nmol/min/mg contain approximately 1 cluster/mol on average. Efficient turnover coupled to NADH oxidation requires all three protein components. However, both alkanes and alkenes are hydroxylated by the chemically reduced hydroxylase under single turnover conditions in the absence of component B and the reductase. Neither of these components catalyzes hydroxylation individually nor do they significantly affect the yield of hydroxylated product from the chemically reduced hydroxylase. Hydroxylase reduced only to the mixed valent [Fe(II).Fe(III)] state is unreactive toward O2 and yields little hydroxylated product on single turnover. This suggests that the catalytically active species is the fully reduced form. The data presented here provide the first evidence based on catalysis that the site of the monooxygenation reaction is located on the hydroxylase. It thus appears likely that the oxo-bridged iron cluster is capable of catalyzing oxygenase reactions without the intervention of other cofactors. This is a novel function for this type of cluster and implies a new mechanism for the generation of highly reactive oxygen capable of insertion into unactivated carbon-hydrogen bonds.  相似文献   

9.
The reduction potentials of the hydroxylase component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath) have been investigated through potentiometric titrations. The potentials were determined by EPR spectroscopic quantitation of the mixed valent hydroxylase as a function of added sodium dithionite in the presence of appropriate mediators. The reduction of the oxidized Fe(III).Fe(III) form to the mixed valent Fe(II).Fe(III) form occurs at 48 mV versus NHE while the potential for the formation of the fully reduced Fe(II).Fe(II) species from the mixed valent form was determined to be -135 mV. Addition of the substrate propylene to the hydroxylase did not have a major effect on the reduction potentials. Introduction of the protein B and the reductase components, however, completely inhibited reduction of the hydroxylase at potentials as far negative as -200 mV. Addition of propylene to all three methane monooxygenase components greatly facilitated hydroxylase reduction. Under these conditions, the fully reduced form of the protein was obtained at potentials of greater than 150 mV. This high redox potential indicates that the oxidized form of the protein is highly reactive, as required for methane oxidation. The present results reveal aspects of how both protein B and substrate can regulate electron transfer into and out of the hydroxylase component of methane monooxygenase.  相似文献   

10.
Each R2 subunit of mammalian ribonucleotide reductase contains a pair of high spin ferric ions and a tyrosyl free radical essential for activity. To study the mechanism of tyrosyl radical formation, substoichiometric amounts of Fe(II) were added to recombinant mouse R2 apoprotein under strictly anaerobic conditions and then the solution was exposed to air. Low temperature EPR spectroscopy showed that the signal from the generated tyrosyl free radical correlated well with the quantity of the Fe(II) added with a stoichiometry of 3 Fe(II) needed to produce 1 tyrosyl radical: 3 Fe(II) + P + O2 + Tyr-OH + H+----Fe(III)O2-Fe(III)-P + H2O. + Tyr-O. + Fe(III), where P is an iron-binding site of protein R2 and Tyr-OH is the active tyrosyl residue. The O-O bond of a postulated intermediate O2(2-)-Fe(III)2-P state is cleaved by the extra electron provided by Fe(II) leading to formation of OH., which in turn reacts with Tyr-OH to give Tyr-O.. In the presence of ascorbate, added to reduce the monomeric Fe(III) formed, 80% of the Fe(II) added produced a radical. The results strongly indicate that each dimeric Fe(III) center during its formation can generate a tyrosyl-free radical and that iron binding to R2 apoprotein is highly cooperative.  相似文献   

11.
Jiang W  Hoffart LM  Krebs C  Bollinger JM 《Biochemistry》2007,46(30):8709-8716
We recently showed that the class Ic ribonucleotide reductase from the human pathogen Chlamydia trachomatis uses a Mn(IV)/Fe(III) cofactor to generate protein and substrate radicals in its catalytic mechanism [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. Here, we have dissected the mechanism of formation of this novel heterobinuclear redox cofactor from the Mn(II)/Fe(II) cluster and O2. An intermediate with a g = 2 EPR signal that shows hyperfine coupling to both 55Mn and 57Fe accumulates almost quantitatively in a second-order reaction between O2 and the reduced R2 complex. The otherwise slow decay of the intermediate to the active Mn(IV)/Fe(III)-R2 complex is accelerated by the presence of the one-electron reductant, ascorbate, implying that the intermediate is more oxidized than Mn(IV)/Fe(III). M?ssbauer spectra show that the intermediate contains a high-spin Fe(IV) center. Its chemical and spectroscopic properties establish that the intermediate is a Mn(IV)/Fe(IV)-R2 complex with an S = 1/2 electronic ground state arising from antiferromagnetic coupling between the Mn(IV) (S(Mn) = 3/2) and high-spin Fe(IV) (S(Fe) = 2) sites.  相似文献   

12.
X-Ray analysis of the ferritin of Escherichia coli (Ec-FTN) and of Ec-FTN crystals soaked in (NH4)2Fe(SO4)2 has revealed the presence of three iron-binding sites per subunit. Two of these form a di-iron site in the centre of the subunit as has been proposed for the ‘ferroxidase centres’ of human ferritin H chains. This di-iron site, lying within the 4-alpha-helix bundle, resemble those of ribonucleotide reductase, methane monoxygenase and haemerythrin. The third iron is bound by ligands unique to Ec-FTN on the inner surface of the protein shell. It is speculated that this state may represent the nucleation centre of a novel type of Fe(III) cluster, recently observed in Ec-FTN.  相似文献   

13.
Electron nuclear double resonance (ENDOR) spectroscopy is used to probe the coordination of the mixed valence (Fe(II).Fe(III)) diiron cluster of the methane monooxygenase hydroxylase component (MMOH-) isolated from Methylosinus trichosporium OB3b. ENDOR resonances are observed along the principal axis directions g1 = 1.94 and g3 = 1.76 from at least nine different protons and two different nitrogens. The nitrogens are strongly coupled and appear to be directly coordinated to the cluster irons. The ratio of their superhyperfine coupling constants is roughly 4:7, which equals the ratio of the spin expectation values of the Fe(II) and Fe(III) in the ground state and suggests that at least one nitrogen is coordinated to each iron of the mixed valence cluster. Moreover, the superhyperfine and quadrupole coupling constants assigned to the Fe(III) site (AN = 13.6 MHz, PN = 0.7 MHz) are comparable with those observed for semimethemerythrin sulfide (AN = 12.1 MHz, PN = 0.7 MHz), for which the nitrogen ligands are histidines. At least three of the coupled protons exchange slowly when MMOH- is incubated in D2O, and 2H ENDOR resonances are subsequently observed. These observations are also consistent with histidine ligation of the iron cluster. On addition of the inhibitor dimethyl sulfoxide (Me2SO) to MMOH- the EPR spectrum sharpens and shifts dramatically. Only one set of 14N ENDOR resonances is observed with frequencies equal to those assigned to the Fe(III)-histidine resonances of uncomplexed MMOH- suggesting that the nitrogen coordination to the Fe(II) site is altered or possibly lost in the presence of Me2SO. 2H ENDOR resonances are observed in the presence of d6-Me2SO indicating that the inhibitor Me2SO binds near or possibly to the diiron cluster. In contrast, no 2H ENDOR resonances are observed from d4-methanol upon addition to MMOH-. Thus, the changes observed in the EPR spectrum of MMOH- upon addition of methanol may result from binding to a site away from the diiron cluster or from bulk solvent effects on the protein structure.  相似文献   

14.
The iron-containing B2 subunit of ribonucleotide reductase from Escherichia coli has been investigated by Raman spectroscopy. Both the tyrosyl radical-containing native protein and the radical-free protein exhibit a resonance-enhanced Raman band at 500 cm?1. This band is assigned to an Fe-O vibrational mode arising from an oxygen-containing ligand. The failure to observe any tyrosinate ring modes makes it unlikely that ribonucleotide reductase is an iron-tyrosinate protein and rules out tyrosinate oxygen as a ligand. It is proposed that the 500 cm?1 band in ribonucleotide reductase is analogous to the 510 cm?1 Fe-O vibrational mode of methemerythrin and arises from an oxo- or carboxylate-bridge between the antiferromagnetically-coupled Fe(III) ions.  相似文献   

15.
Saleh L  Krebs C  Ley BA  Naik S  Huynh BH  Bollinger JM 《Biochemistry》2004,43(20):5953-5964
A key step in generation of the catalytically essential tyrosyl radical (Y122(*)) in protein R2 of Escherichia coli ribonucleotide reductase is electron transfer (ET) from the near-surface residue, tryptophan 48 (W48), to a (Fe(2)O(2))(4+) complex formed by addition of O(2) to the carboxylate-bridged diiron(II) cluster. Because this step is rapid, the (Fe(2)O(2))(4+) complex does not accumulate and, therefore, has not been characterized. The product of the ET step is a "diradical" intermediate state containing the well-characterized Fe(IV)Fe(III) cluster, X, and a W48 cation radical (W48(+)(*)). The latter may be reduced from solution to complete the two-step transfer of an electron to the buried diiron site. In this study, a (Fe(2)O(2))(4+) state that is probably the precursor to the X-W48(+)(*) diradical state in the reaction of the wild-type protein (R2-wt) has been characterized by exploitation of the observation that in R2 variants with W48 replaced with alanine (A), the otherwise disabled ET step can be mediated by indole compounds. Mixing of the Fe(II) complex of R2-W48A/Y122F with O(2) results in accumulation of an intermediate state that rapidly converts to X upon mixing with 3-methylindole (3-MI). The state comprises at least two species, of which each exhibits an apparent M?ssbauer quadrupole doublet with parameters characteristic of high-spin Fe(III) ions. The isomer shifts of these complexes and absence of magnetic hyperfine coupling in their M?ssbauer spectra suggest that both are antiferromagnetically coupled diiron(III) clusters. The fact that both rapidly convert to X upon treatment with a molecule (3-MI) shown in the preceding paper to mediate ET in W48A R2 variants indicates that they are more oxidized than X by one electron, which suggests that they have a bound peroxide equivalent. Their failure to exhibit either the long-wavelength absorption (at 650-750 nm) or M?ssbauer doublet with high isomer shift (>0.6 mm/s) that are characteristic of the putatively mu-1,2-peroxo-bridged diiron(III) intermediates that have been detected in the reactions of methane monooxygenase (P or H(peroxo)) and variants of R2 with the D84E ligand substitution suggests that they have geometries and electronic structures different from those of the previously characterized complexes. Supporting this deduction, the peroxodiiron(III) complex that accumulates in R2-W48A/D84E is much less reactive toward 3-MI-mediated reduction than the (Fe(2)O(2))(4+) state in R2-W48A/Y122F. It is postulated that the new (Fe(2)O(2))(4+) state is either an early adduct in an orthogonal pathway for oxygen activation or, more likely, the successor to a (mu-1,2-peroxo)diiron(III) complex that is extremely fleeting in R2 proteins with the wild-type ligand set but longer lived in D84E-containing variants.  相似文献   

16.
Jiang W  Xie J  Nørgaard H  Bollinger JM  Krebs C 《Biochemistry》2008,47(15):4477-4483
We recently showed that the class Ic ribonucleotide reductase (RNR) from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor in its R2 subunit to initiate catalysis [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. The Mn (IV) site of the novel cofactor functionally replaces the tyrosyl radical used by conventional class I RNRs to initiate substrate radical production. As a first step in evaluating the hypothesis that the use of the alternative cofactor could make the RNR more robust to reactive oxygen and nitrogen species [RO(N)S] produced by the host's immune system [H?gbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gr?slund, A., and Nordlund, P. (2004) Science 305, 245-248], we have examined the reactivities of three stable redox states of the Mn/Fe cluster (Mn (II)/Fe (II), Mn (III)/Fe (III), and Mn (IV)/Fe (III)) toward hydrogen peroxide. Not only is the activity of the Mn (IV)/Fe (III)-R2 intermediate stable to prolonged (>1 h) incubations with as much as 5 mM H 2O 2, but both the fully reduced (Mn (II)/Fe (II)) and one-electron-reduced (Mn (III)/Fe (III)) forms of the protein are also efficiently activated by H 2O 2. The Mn (III)/Fe (III)-R2 species reacts with a second-order rate constant of 8 +/- 1 M (-1) s (-1) to yield the Mn (IV)/Fe (IV)-R2 intermediate previously observed in the reaction of Mn (II)/Fe (II)-R2 with O 2 [Jiang, W., Hoffart, L. M., Krebs, C., and Bollinger, J. M., Jr. (2007) Biochemistry 46, 8709-8716]. As previously observed, the intermediate decays by reduction of the Fe site to the active Mn (IV)/Fe (III)-R2 complex. The reaction of the Mn (II)/Fe (II)-R2 species with H 2O 2 proceeds in three resolved steps: sequential oxidation to Mn (III)/Fe (III)-R2 ( k = 1.7 +/- 0.3 mM (-1) s (-1)) and Mn (IV)/Fe (IV)-R2, followed by decay of the intermediate to the active Mn (IV)/Fe (III)-R2 product. The efficient reaction of both reduced forms with H 2O 2 contrasts with previous observations on the conventional class I RNR from Escherichia coli, which is efficiently converted from the fully reduced (Fe 2 (II/II)) to the "met" (Fe 2 (III/III)) form [Gerez, C., and Fontecave, M. (1992) Biochemistry 31, 780-786] but is then only very inefficiently converted from the met to the active (Fe 2 (III/III)-Y (*)) form [Sahlin, M., Sj?berg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990) Biochem. Biophys. Res. Commun. 167, 813-818].  相似文献   

17.
M?ssbauer and EPR studies of a highly active hydroxylase component of methane monooxygenase isolated from Methylosinus trichosporium OB3b are reported. The M?ssbauer spectra of the oxidized (as isolated) hydroxylase show iron in a diamagnetic cluster containing an even number of Fe3+ sites. The parameters are consistent with an antiferromagnetically coupled binuclear cluster similar to those of hemerythrin and purple acid phosphatases. Upon partial reduction of the hydroxylase, an S = 1/2 EPR spectrum with g values at 1.94, 1.86, and 1.75 (gav = 1.85) is observed. Such spectra are characteristic of oxo-bridged iron dimers in the mixed valent Fe(II).Fe(III) state. Further reduction leads to the appearance of a novel EPR resonance at g = 15. Comparison with an inorganic model compound for mu-oxo-bridged binuclear iron suggests that the g = 15 signal is characteristic of the doubly reduced state of the cluster in the protein. In this state, the M?ssbauer spectra exhibit two quadrupole doublets typical of high spin Fe2+, consistent with the Fe(II).Fe(II) form of the cluster. The spectral features of the iron center of the hydroxylase in three oxidation states are all similar to those reported for mu-oxo (or mu-hydroxo)-bridged binuclear iron clusters. Since no known monooxygenase contains such a cluster, a new oxygenase mechanism is suggested. Three different preparative methods yielded hydroxylases spanning a 9-fold range in specific activity, yet the same cluster concentration and spectral characteristics were observed. Thus, other parameters than those measured here have a major influence on the activity.  相似文献   

18.
Ribonucleotide reductase (class I) contains two components: protein R1 binds the substrate, and protein R2 normally has a diferric site and a tyrosyl free radical needed for catalysis. In Chlamydia trachomatis RNR, protein R2 functions without radical. Enzyme activity studies show that in addition to a diiron cluster, a mixed manganese-iron cluster provides the oxidation equivalent needed to initiate catalysis. An EPR signal was observed from an antiferromagnetically coupled high-spin Mn(III)-Fe(III) cluster in a catalytic reaction mixture with added inhibitor hydroxyurea. The manganese-iron cluster in protein R2 confers much higher specific activity than the diiron cluster does to the enzyme.  相似文献   

19.
The anaerobic ribonucleotide reductase from Escherichia coli contains an iron-sulfur cluster which, in the reduced [4Fe-4S]+ form, serves to reduce S-adenosylmethionine and to generate a catalytically essential glycyl radical. The reaction of the reduced cluster with oxygen was studied by UV-visible, EPR, NMR, and Mössbauer spectroscopies. The [4Fe-4S]+ form is shown to be extremely sensitive to oxygen and converted to [4Fe-4S]2+, [3Fe-4S]+/0, and to the stable [2Fe-2S]2+ form. It is remarkable that the oxidized protein retains full activity. This is probably due to the fact that during reduction, required for activity, the iron atoms, from 2Fe and 3Fe clusters, readily reassemble to generate an active [4Fe-4S] center. This property is discussed as a possible protective mechanism of the enzyme during transient exposure to air. Futhermore, the [2Fe-2S] form of the protein can be converted into a [3Fe-4S] form during chromatography on dATP-Sepharose, explaining why previous preparations of the enzyme were shown to contain large amounts of such a 3Fe cluster. This is the first report of a 2Fe to 3Fe cluster conversion.  相似文献   

20.
The active form of protein B2, the small subunit of ribonucleotide reductase, contains two dinuclear Fe(III) centers and a tyrosyl radical. The inactive metB2 form also contains the same diferric complexes but lacks the tyrosyl radical. We now demonstrate that incubation of metB2 with hydrogen peroxide generates the tyrosyl radical. The reaction is optimal at 5.5 nM hydrogen peroxide, with a maximum of 25-30% tyrosyl radical being formed after approximately 1.5 hr of incubation. The activation reaction is counteracted by a hydrogen peroxide-dependent reduction of the tyrosyl radical. It is likely that the generation of the radical proceeds via a ferryl intermediate, as in the proposed mechanisms for cytochrome P-450 and the peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号