首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Young and adult rats received intracranial injections of [33P]orthophosphoric acid. The time course of the appearance and decay of the radioactive label on basic proteins in isolated myelin was followed for 1 mo. Incorporation was maximal by 1 h, followed by a decay phase with a half-life of approximately 2 wk. However, radioactivity in the acid-soluble precursor pool (which always constituted at least half of the total radioactivity) decayed with a similar half-life, suggesting that the true turnover time of basic protein phosphates might be masked by continued exchange with a long-lived radioactive precursor pool. Calculations based on the rate of incorporation were made to more closely determine the true turnover time; it was found that most of the phosphate groups of basic protein turned over in a matter of minutes. Incorporation was independent of the rate of myelin synthesis but was proportional to the amount of myelin present. Experiments in which myelin was subfractionated to yield fractions differing in degree of compaction suggested that even the basic protein phosphate groups of primarily compacted myelin participated in this rapid exchange. Similar studies were carried out on the metabolism of radioactive amino acids incorporated into the peptide backbone of myelin basic proteins. The metabolism of the methyl groups of methylarginines also was monitored using [methyl-3H]methionine as a precursor. In contrast to the basic protein phosphate groups, both the peptide backbone and the modifying methyl groups had a metabolic half-life of months, which cannot be accounted for by reutilization from a pool of soluble precursor. The demonstration that the phosphate groups of myelin basic protein turn over rapidly suggests that, in contrast to the static morphological picture, basic proteins may be readily accessible to cytoplasm in vivo.  相似文献   

8.
The post-translational modification of proliferating cell nuclear antigen (PCNA) has been implicated in modulating its function for over 20 years. With multiple interacting partners, PCNA is involved in processes ranging from DNA replication and repair to cell cycle control and apoptosis. The ability of PCNA to distinguish between specific binding partners in different tasks is currently of intense interest, and several post-translational modifications have been reported to modulate its function. Unfortunately, these reports have produced contradictory information on the type(s) of modification present on the molecule. Here we report a detailed structural analysis of a single acidic PCNA isoform, cancer-specific polyferating nuclear anitgen (csPCNA), isolated from breast cancer cells by 2D-PAGE and LC-MS/MS. With this approach we fully characterized the csPCNA isoform and confidently identified a single post-translational modification, methyl esterification. Interestingly, the methyl esters consistently localized to 15 specific glutamic and aspartic acid residues of csPCNA. The methyl esterification of csPCNA represents a novel type of post-translational modification in mammalian cells that could ultimately hold the key towards unlocking its diverse functions.  相似文献   

9.
10.
11.
Cells maintain organellar pools of "labile iron" (LI), despite its propensity for catalyzing the formation of reactive oxygen species. These pools are identifiable by iron-chelating probes and accessible to pharmacological agents. Cytosolic LI has been assumed to have a dual function: providing a rapidly adjustable source of iron for immediate metabolic utilization, and for sensing by iron-regulatory proteins (IRPs) that regulate iron uptake and compartmentalization via transferrin receptors and ferritin. However, it now appears that IRPs may respond both to fluctuations in LI per se and to secondary signals associated with redox-active species. Recent information also indicates that iron can be delivered to mitochondria via pathways that circumvent cytosolic LI, suggesting possible alternative mechanisms of cell iron mobilization and trafficking. We discuss the changing views of intracellular LI pools in relation to iron homeostasis and cellular distribution in physiological and pathological states.  相似文献   

12.
13.
14.
15.
The work deals with the investigation of possible use of 31P-NMR for revealing metabolism changes in the mouse liver during the development of leukemia. This method was shown to permit observation of the extreme pattern of relative concentrations of sugar phosphate and bioorganic phosphate in the latent period. This observed increase in the metabolic activity of hepatocytes correlates with biophysical shifts found by other methods.  相似文献   

16.
17.
18.
19.
Acid labile sugar in pepsinogen   总被引:1,自引:0,他引:1  
  相似文献   

20.
A high molecular weight intracellular enzyme of Bacillus brevis ATCC 9999 is released when the organism is disrupted by sonication of homogenization. However, both processes also degrade the enzyme. Assays for protein release and specific enzymatic activity of the released protein indicate that both release and degradation can be represented by first-order kinetic models. Utilization of the difference between the kinetics of release and degradation allows optimization in the recovery of this enzyme for both the sonication and homogenization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号