首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王斌  叶冬青   《微生物学通报》2003,30(3):99-103
近年来,人们发现了耶尔森菌强毒力岛,并对其结构与功能进行了大量研究。同时,在一些研究中,发现它也广泛存在于其它几种肠道致病菌中。就耶尔森菌毒力岛HPI结构与功能及它在其它肠道致病菌分布的研究现状作一综述。  相似文献   

2.
Extraintestinal pathogenic Escherichia coli (ExPEC) are an important cause of urinary tract infections, neonatal meningitis and septicaemia in humans. Animals are recognized as a reservoir for human intestinal pathogenic E. coli, but whether animals are a source for human ExPEC is still a matter of debate. Pathologies caused by ExPEC are reported for many farm animals, especially for poultry, in which colibacillosis is responsible for huge losses within broiler chickens. Cases are also reported for companion animals. Commensal E. coli strains potentially carrying virulence factors involved in the development of human pathologies also colonize the intestinal tract of animals. This review focuses on the recent evidence of the zoonotic potential of ExPEC from animal origin and their potential direct or indirect transmission from animals to humans. As antimicrobials are commonly used for livestock production, infections due to antimicrobial-resistant ExPEC transferred from animals to humans could be even more difficult to treat. These findings, combined with the economic impact of ExPEC in the animal production industry, demonstrate the need for adapted measures to limit the prevalence of ExPEC in animal reservoirs while reducing the use of antimicrobials as much as possible.  相似文献   

3.
Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands.  相似文献   

4.
The ability of some strains of Vibrio parahaemolyticus to hydrolyze urea (uh+) can be used as a marker to predict which strains isolated from molluscan shellfish harvested in the Pacific Northwest are potentially pathogenic. The thermostable direct hemolysin-producing (TDH+) characteristic is a marker that is correlated with potential pathogenicity, and all of the TDH+ strains that we have isolated have been found to be uh+. Most of the uh+ strains belong to somatic antigen groups O3, O4 and O5. TDH+ strains are usually members of groups O4 and O5. The strains most often associated with human illness are members of the uh+, O4 group. The test for urease production is a simple screening test that can be helpful in predicting which strains are potentially pathogenic.  相似文献   

5.
Intestinal pathogenic Escherichia coli are a major cause of worldwide morbidity and mortality. Currently seven intestinal pathovars are recognized causing a wide range of intestinal disorders that are sometimes associated with severe and even lethal complications. The arsenal of virulence factors is used to subvert cellular functions of the host thereby enhancing adaptation, virulence and pathogenicity. Virulence factor profiles are largely the result of the acquisition of mobile genetic elements such as prophages and pathogenicity islands. A group of highly adapted intestinal pathogenic E. coli that are characterized by the induction of ‘attaching‐and‐effacing (A/E) lesions’ have acquired a decisive pathogenicity island, the ‘locus of enterocyte effacement – LEE’ by horizontal gene transfer. This review focuses on recent advances in our understanding of A/E E. coli. It highlights novel functions of effector proteins, addresses the LEE flanking regions where additional genetic elements such as the LifA/Efa1 region have been identified, and points to implications for diagnostics and therapy due to the putative interconversion of A/E E. coli during infection.  相似文献   

6.
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.  相似文献   

7.
The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains causing worldwide outbreaks of severe disease to avirulent isolates which are part of the normal intestinal flora or which are well characterized and safe laboratory strains. The pathogenicity of a given E. coli strain is mainly determined by specific virulence factors which include adhesins, invasins, toxins and capsule. They are often organized in large genetic blocks either on the chromosome ('pathogenicity islands'), on large plasmids or on phages and can be transmitted horizontally between strains. In this review we summarize the current knowledge of the virulence attributes which determine the pathogenic potential of E. coli strains and the methodology available to assess the virulence of E. coli isolates. We also focus on a recently developed procedure based on a broad-range detection system for E. coli-specific virulence genes that makes it possible to determine the potential pathogenicity and its nature in E. coli strains from various sources. This makes it possible to determine the pathotype of E. coli strains in medical diagnostics, to assess the virulence and health risks of E. coli contaminating water, food and the environment and to study potential reservoirs of virulence genes which might contribute to the emergence of new forms of pathogenic E. coli.  相似文献   

8.
Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium. This process is mediated by intimin, an outer membrane protein that is homologous to the invasins of pathogenic Yersinia. The intimin (eae) gene is part of a pathogenicity island, a 35-kb segment of DNA that has been acquired independently in different groups of pathogens. Nucleotide sequences of eae of three EPEC and four EHEC strains representing distinct clonal lineages revealed an exceptionally high level of divergence (15%) in the amino acid sequences of alpha, beta, and gamma intimin molecules, most of which is concentrated in the C-terminal region. The gamma intimin sequences from E. coli strains with serotypes O157:H7, O55:H7, and O157:H- are virtually identical, supporting the hypothesis that these bacteria belong to a single clonal lineage. Sequences of beta intimin of EPEC strains of serotypes O111:H2 and O128:H2 show substantial differences from alpha and gamma intimins, indicating that these strains have evolved independently. Strong nonrandom clustering of polymorphic sites indicates that the intimin genes are mosaics, suggesting that protein divergence has been accelerated by recombination and diversifying selection.  相似文献   

9.
On the basis of long-term (1995–2010 and 2013–2014) microbiological monitoring of water and pike perch in the various water areas of the Volga Delta, four dominant groups of bacteria from the family Enterobacteriaceae and genera Aeromonas, Flavobacterium, and Pseudomonas were identified. The results of studies on the species composition of water microflora and fish from natural populations and artificial breeding are summarized. The prevalence of potentially pathogenic microflora in the water and fish over the indicative ones has been shown. Water temperature influences the seasonal cycles of microorganisms and their pathogenicity factors, which determine their fast adaptation to living in different ecological niches.  相似文献   

10.
White rot or stem rot caused by Sclerotinia sclerotiorum is one of the most destructive fungal diseases that have become a serious threat to the successful cultivation of oilseed Brassicas. The study was designed with an aim to investigate the association between the pathogenic aggressiveness and pathogenicity determinants of this pathogen specifically in Brassica for the first time. For this, a total of 58 isolates of S. sclerotiorum from different geographical regions were collected and purified. These isolates were inoculated on a Brassica juncea cv. RL-1359 and they exhibited high level of variation in their disease progression. The isolates were grouped and then 24 isolates were selected for the biochemical analysis of pathogenicity determinants. The isolates varied significantly with respect to their total organic acids, oxalic acid production and pectin methyl esterase and polygalacturonase activity. The oxalic acid production corresponded to the disease progression of the isolates; the isolates with higher oxalic acid production were the more aggressive ones and vice-versa. This is, in our knowledge, the first study to establish a correlation between oxalic acid production and pathogenic aggressiveness of S. sclerotiorum on B. juncea. However, the pectinases’ enzyme activity did not follow the trend as of disease progression. These suggest an indispensable role of oxalic acid in pathogenicity of the fungus and the potential to be used as biochemical marker for preliminary assessment of pathogenic aggressiveness of various isolates before incorporating them in a breeding program.  相似文献   

11.
Campylobacter concisus has garnered increasing attention due to its association with intestinal disease, thus, the pathogenic potential of strains isolated from different intestinal diseases was investigated. A method to isolate C. concisus was developed and the ability of eight strains from chronic and acute intestinal diseases to adhere to and invade intestinal epithelial cells was determined. Features associated with bacterial invasion were investigated using comparative genomic analyses and the effect of C. concisus on host protein expression was examined using proteomics. Our isolation method from intestinal biopsies resulted in the isolation of three C. concisus strains from children with Crohn's disease or chronic gastroenteritis. Four C. concisus strains from patients with chronic intestinal diseases can attach to and invade host cells using mechanisms such as chemoattraction to mucin, aggregation, flagellum-mediated attachment, "membrane ruffling", cell penetration and damage. C. concisus strains isolated from patients with chronic intestinal diseases have significantly higher invasive potential than those from acute intestinal diseases. Investigation of the cause of this increased pathogenic potential revealed a plasmid to be responsible. 78 and 47 proteins were upregulated and downregulated in cells infected with C. concisus, respectively. Functional analysis of these proteins showed that C. concisus infection regulated processes related to interleukin-12 production, proteasome activation and NF-κB activation. Infection with all eight C. concisus strains resulted in host cells producing high levels of interleukin-12, however, only strains capable of invading host cells resulted in interferon-γ production as confirmed by ELISA. These findings considerably support the emergence of C. concisus as an intestinal pathogen, but more significantly, provide novel insights into the host immune response and an explanation for the heterogeneity observed in the outcome of C. concisus infection. Moreover, response to infection with invasive strains has substantial similarities to that observed in the inflamed mucosa of Crohn's disease patients.  相似文献   

12.
In the process of examination of 156 children of different age groups 176 E. coli cultures were isolated; of these, 98 cultures were isolated from acute cystitis and pyelonephritis patients, 28--from urine in cases of aysmptomatic bacteriuria, 30--from feces in cases of asymtomatc bacteriuria and intestinal dysbacteriosis, while 20 cultures--from feces of healthy children. In these bacteria the presence of genes associated with pathogenicity islets (PI) hlyA, hlyB, cnf-1, papC, sfaG and gene irp-2 (iron-regulated protein) was established with PCR. The detection rate of PI determinants in uropathogenic E. coli (UPEC) was shown to depend on the variants of the clinical manifestation of urinary tract infection. The total detection rate of PI gene fragments in UPEC cultures of different origin was indicative of their definitely less frequent occurrence in asymptomatic bacteriuria, observed simultaneously with intestinal dysbacteriosis, in comparison with acute urological infection. Practically the same detection rate of PI determinants in E. coli, isolated in asymptomatic bacteriuria in children, reflected high probability of genetic exchange in the above-mentioned fragments and made it possible to presume the existence of DNA sites, characteristic mainly of pathogenic clones. The established heterogeneity of the detection rate of PI determinants in E. coli clinical isolates requires further study.  相似文献   

13.
Members of the genus Aeromonas are ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identify Aeromonas species within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity. Aeromonas strains were isolated from Lake Erie water by use of Aeromonas selective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based on gyrB gene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated that Aeromonas comprised 16% of all culturable bacteria from Lake Erie. Among 119 Aeromonas isolates, six species were identified, though only two species (Aeromonas hydrophila and A. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypes in vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes among A. hydrophila and A. veronii isolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern.  相似文献   

14.
In the Janzen–Connell hypothesis, host-specific natural enemies enhance species diversity and influence the structure of plant communities. This study tests the explicit assumption of host specificity for soil pathogens of the genus Pythium that cause damping-off disease of germinating seeds and seedlings. We isolated Pythium spp. from soil of a tropical forest in Panama. Then, in an inoculation experiment, we determined the pathogenicity of 75 tropical isolates of unknown pathogenicity and seven pathogenic temperate isolates of Pythium on seeds and/or seedlings of eight tropical tree species. Only three tropical isolates, one identified as P. ultimum and two as P. aphanidermatum , were pathogenic. Tropical pathogenic isolates were pathogenic on 4–6 of eight tree species. Temperate isolates were pathogenic on 0–4 of eight species, indicating that some tropical tree species are susceptible to novel isolates of Pythium . No tree species was susceptible to all isolates and two species were not susceptible to any isolate. Collectively, these results indicate that these Pythium isolates vary widely in their pathogenicity, causing differential mortality of potential host species; likewise, the tree species vary in their susceptibility to a given Pythium isolate. These differences in pathogenicity and susceptibility indicate some support for the Janzen–Connell assumption of host specificity. While they are not restricted to a single species, their intermediate level of specificity suggests that Pythium spp. have the potential to have some effect on forest community structure and diversity.  相似文献   

15.
To successfully infect plants, pathogenic fungi must recognize and communicate with their host during different stages of the disease cycle. In past years, techniques such as insertional mutagenesis, sensitive GFP-based reporter systems and microarray techniques have been developed to analyze these processes at the molecular level, and now novel insights into this fascinating aspect of pathogen-plant communication are beginning to emerge. This is exemplified by a number of pathogenicity genes functioning in distinct stages of pathogenic development in Magnaporthe grisea.  相似文献   

16.
The gut microbiome functions like an endocrine organ, generating bioactive metabolites, enzymes or small molecules that can impact host physiology. Gut dysbacteriosis is associated with many intestinal diseases including (but not limited to) inflammatory bowel disease, primary sclerosing cholangitis-IBD, irritable bowel syndrome, chronic constipation, osmotic diarrhoea and colorectal cancer. The potential pathogenic mechanism of gut dysbacteriosis associated with intestinal diseases includes the alteration of composition of gut microbiota as well as the gut microbiota–derived signalling molecules. The many correlations between the latter and the susceptibility for intestinal diseases has placed a spotlight on the gut microbiome as a potential novel target for therapeutics. Currently, faecal microbial transplantation, dietary interventions, use of probiotics, prebiotics and drugs are the major therapeutic tools utilized to impact dysbacteriosis and associated intestinal diseases. In this review, we systematically summarized the role of intestinal microbiome in the occurrence and development of intestinal diseases. The potential mechanism of the complex interplay between gut dysbacteriosis and intestinal diseases, and the treatment methods are also highlighted.  相似文献   

17.
The lipodystrophy syndrome is one of the complications reported with increased frequency in patients with HIV-1 infection receiving antiretroviral therapy. The wide range of prevalence estimates may be due to differing definitions, methods and patient populations. We described the various pathogenic theories and the morphological and metabolic alterations associated with this syndrome. Even if no effective treatment exists, a correct lifestyle, adequate diet and physical exercise seem to be very important. Moreover drug therapies should be used with care to avoid potentially harmful interactions with antiretroviral agents. Ideally, the future effort to define the mechanism of lipodystrophy would be multidisciplinary and would involve not only experts in AIDS research but also nutritionists, endocrinologists and cardiologists.  相似文献   

18.
Guide RNA molecules (crRNA) produced from clustered regularly interspaced short palindromic repeat (CRISPR) arrays, altogether with effector proteins (Cas) encoded by cognate cas (CRISPR associated) genes, mount an interference mechanism (CRISPR-Cas) that limits acquisition of foreign DNA in Bacteria and Archaea. The specificity of this action is provided by the repeat intervening spacer carried in the crRNA, which upon hybridization with complementary sequences enables their degradation by a Cas endonuclease. Moreover, CRISPR arrays are dynamic landscapes that may gain new spacers from infecting elements or lose them for example during genome replication. Thus, the spacer content of a strain determines the diversity of sequences that can be targeted by the corresponding CRISPR-Cas system reflecting its functionality. Most Escherichia coli strains possess either type I-E or I-F CRISPR-Cas systems. To evaluate their impact on the pathogenicity of the species, we inferred the pathotype and pathogenic potential of 126 strains of this and other closely related species and analyzed their repeat content. Our results revealed a negative correlation between the number of I-E CRISPR units in this system and the presence of pathogenicity traits: the median number of repeats was 2.5-fold higher for commensal isolates (with 29.5 units, range 0–53) than for pathogenic ones (12.0, range 0–42). Moreover, the higher the number of virulence factors within a strain, the lower the repeat content. Additionally, pathogenic strains of distinct ecological niches (i.e., intestinal or extraintestinal) differ in repeat counts. Altogether, these findings support an evolutionary connection between CRISPR and pathogenicity in E. coli.  相似文献   

19.
J S Keystone  D L Keystone  E M Proctor 《CMAJ》1980,123(6):512-514
In a controlled study 67.5% of 200 homosexual men but only 16% of 100 heterosexual men were found to be infected with intestinal parasites. Entamoeba histolytica was isolated from 27% of the homosexual and 1% of the heterosexual men, and Giardia lamblia was isolated from 13% of the homosexual and 3% of the heterosexual men. The presence of symptoms could not be correlated with infection except when the infection was caused by more than one organism, including G. lamblia. Symptoms were much more common in both infected and uninfected homosexuals than in heterosexuals. Among the homosexual men recent foreign travel, living in a homosexual household and promiscuity were not correlated with intestinal parasitic infection, but cleansing of the anus before and sex was associated with a significantly lower prevalence of infection. These findings suggest that the male homosexual community may be an important reservoir of potentially pathogenic protozoa.  相似文献   

20.
Previous comparisons of different rabies virus (RV) strains suggested an inverse relationship between pathogenicity and the amount of glycoprotein produced in infected cells. In order to provide more insight into this relationship, we pursued an experimental approach that allowed us to alter the glycoprotein expression level without altering the glycoprotein sequence, thereby eliminating the contribution of amino acid changes to differences in viral virulence. To this end, we constructed an infectious clone of the highly pathogenic rabies virus strain CVS-N2c and replaced its cognate glycoprotein gene with synthetic versions in which silent mutations were introduced to replace wild-type codons with the most or least frequently used synonymous codons. A recombinant N2c variant containing the fully codon-optimized G gene and three variants carrying a partially codon-deoptimized G gene were recovered on mouse neuroblastoma cells and shown to express 2- to 3-fold more and less glycoprotein, respectively, than wild-type N2c. Pathogenicity studies in mice revealed the WT-N2c virus to be the most pathogenic strain. Variants containing partially codon-deoptimized glycoprotein genes or the codon-optimized gene were less pathogenic than WT-N2c but still caused significant mortality. We conclude that the expression level of the glycoprotein gene does have an impact on pathogenicity but is not a dominant factor that determines pathogenicity. Thus, strategies such as changes in codon usage that aim solely at altering the expression level of the glycoprotein gene do not suffice to render a pathogenic rabies virus apathogenic and are not a viable and safe approach for attenuation of a pathogenic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号