首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To study the pathways for initiation of intrinsic blood coagulation, activated human platelets were compared with dextran sulfate as surfaces for factor XI activation by factor XIIa, factor XIa, or thrombin. Activated gel-filtered platelets promoted the activation of factor XI (60 nm) by thrombin (0.02-10 nm, EC(50) approximately 100 pm, threshold concentration approximately 10 pm) at initial rates 2- to 3-fold greater than those obtained with dextran sulfate in the presence of either high molecular weight kininogen (45 nm) and ZnCl(2) (25 micrometer) or prothrombin (1.2 micrometer) and CaCl(2) (2 mm). The maximum rates of factor XI activation achieved in the presence of activated gel-filtered platelets were 30 nm.min(-1) with thrombin, 6 nm.min(-1) with factor XIIa and 2 nm.min(-1) with factor XIa. Values of turnover number calculated at various enzyme concentrations (0.05-1 nm) were 24-167 (mean = 86) min(-1) for thrombin, 4.6-50 (mean = 21) min(-1) for factor XIIa, and 1.3-14 (mean = 8) min(-1) for factor XIa. A physiological concentration of fibrinogen (9.0 micrometer) inhibited factor XI activation by thrombin (but not by factor XIIa) in the presence of dextran sulfate but not in the presence of gel-filtered platelets. Compared with factors XIIa and XIa, thrombin is the preferred factor XI activator, and activated platelets are a relevant physiological surface for thrombin-mediated initiation of intrinsic coagulation in vivo.  相似文献   

3.
Coagulation factor XI (FXI) is a covalent homodimer consisting of two identical subunits of 80 kDa linked by a disulfide bond formed by Cys-321 within the Apple 4 domain of each subunit. Because FXI(C321S) is a noncovalent dimer, residues within the interface between the two subunits must mediate its homodimeric structure. The crystal structure of FXI demonstrates formation of salt bridges between Lys-331 of one subunit and Glu-287 of the other subunit and hydrophobic interactions at the interface of the Apple 4 domains involving Ile-290, Leu-284, and Tyr-329. FXI(C321S), FXI(C321S,K331A), FXI(C321S,E287A), FXI(C321S,I290A), FXI(C321S,Y329A), FXI(C321S,L284A), FXI(C321S,K331R), and FXI(C321S,H343A) were expressed in HEK293 cells and characterized using size exclusion chromatography, analytical ultracentrifugation, electron microscopy, and functional assays. Whereas FXI(C321S) and FXI(C321S,H343A) existed in monomer/dimer equilibrium (K(d) approximately 40 nm), all other mutants were predominantly monomers with impaired dimer formation by analytical ultracentrifugation (K(d)=3-38 microm). When converted to the active enzyme, FXIa, all the monomeric mutants activated FIX similarly to wild-type dimeric FXIa. In contrast, these monomeric mutants could not be activated efficiently by FXIIa, thrombin, or autoactivation in the presence of dextran sulfate. We conclude that salt bridges formed between Lys-331 of one subunit and Glu-287 of the other together with hydrophobic interactions at the interface, involving residues Ile-290, Leu-284, and Tyr-329, are essential for homodimer formation. The dimeric structure of FXI is essential for normal proteolytic activation of FXI by FXIIa, thrombin, or FXIa either in solution or on an anionic surface but not for FIX activation by FXIa in solution.  相似文献   

4.
An inhibitor of factor XIIa has been purified from bovine plasma and characterized (Thornton, R.D. and Kirby, E.P. (1987) J. Biol. Chem. 262, 12714-12721). This inhibitor interacts with XIIa to form a very stable complex with a 1:1 stoichiometry. The active site of XIIa, located on the light chain, is directly involved in the interaction, and complex formation between factor XIIa inhibitor and XIIa can be blocked by diisopropyl fluorophosphate, corn trypsin inhibitor, or the chromogenic substrate S2302. Incubation of the complex with excess XIIa does not result in cleavage of the complex. The complex does not spontaneously dissociate and is stable to boiling, SDS, thiocyanate, acid, and hydroxylamine or Tris at pH 7-10. In addition to complex formation, a cleaved form of factor XIIa inhibitor can be observed. We suggest that the inhibitor is acting as a mechanism-based inactivator, using the criteria of time-dependent inactivation under pseudo-first-order conditions, 1:1 stoichiometry, active site involvement, kinetic protection by substrate or by an active site inhibitor, and partitioning between cleavage of factor XIIa inhibitor and inactivation by complex formation.  相似文献   

5.
An inhibitor of factor XIIa has been purified to homogeneity from bovine plasma. The purification steps included precipitation of contaminating proteins with polyethylene glycol and chromatography on DEAE-cellulose, Affi-Gel blue, and immobilized wheat germ lectin. The apparent molecular weight of the XIIa inhibitor (called INH1) was 85,000, reduced, and 92,000, nonreduced, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The extinction coefficient (E0.1%(280)) of INH1 is 1.3, and the protein contains 17.7% carbohydrate. Purified antibody to INH1 raised in either rabbits or chickens formed a precipitin line of identity with purified INH1 and a component of bovine plasma, but there was no reaction with purified human inhibitors or with any component of human plasma. INH1 inhibits bovine and human XIIa, bovine and human C1-esterase, and human kallikrein, but does not inhibit bovine kallikrein, bovine trypsin, human plasmin, or human thrombin. This activity is similar to that of C1-inhibitor but different from antithrombin III, alpha 2-antiplasmin, or alpha 1-protease inhibitor. INH1 at a physiological concentration (0.47 microM) causes rapid inactivation of XIIa. The two molecules react in a 1:1 stoichiometry with a second-order rate constant of 1.23 X 10(6) M-1 min-1.  相似文献   

6.
Activation of bovine factor XII (Hageman factor) by plasma kallikrein   总被引:12,自引:0,他引:12  
  相似文献   

7.
Y Hojima  J V Pierce  J J Pisano 《Biochemistry》1982,21(16):3741-3746
A strong inhibitor of human Hageman factor fragment (HFf, beta-factor XIIa) and bovine trypsin was isolated from pumpkin (Cucurbita maxima) seed extracts by acetone fractionation, by chromatography on columns of diethyl-aminoethylcellulose and carboxylmethyl-Sephadex C-25, and by Sephadex G-50 gel filtration. Pumpkin seed Hageman factor inhibitor (PHFI) is unusual in its lack of inhibition of several other serine proteinases tested--human plasma, human urinary, and porcine pancreatic kallikreins, human alpha-thrombin, and bovine alpha-chymotrypsin. Human plasmin and bovine factor Xa are only weakly inhibited. PHFI also inhibits the HFf-dependent activation of plasma prekallikrein and clotting of plasma. Other properties of PHFI are a pI of 8.3, 29 amino acid residues, amino-terminal arginine, carboxyl-terminal glycine, 3 cystine residues, undetectable sulfhydryl groups and carbohydrate, and arginine at the reactive site. The minimum molecular weight of PHFI is 3268 by amino acid analysis. PHFI may be the smallest protein inhibitor of trypsin known.  相似文献   

8.
A possible role of bovine platelets in the surface-mediated activation of Factor XII and prekallikrein was studied, using the contact system reconstituted with the purified proteins from bovine plasma. The washed platelets before and after aggregation by ADP, thrombin or collagen did not show any ability to trigger or accelerate the activation of Factor XII and prekallikrein. On the contrary, these aggregates showed a potent inhibitory activity on the activation of those zymogens triggered by kaolin, amylose sulfate and sulfatide. The inhibitory substances from the supernatant of the thrombin-induced aggregates were separated into two major fractions, a low affinity fraction and a high affinity fraction, on a heparin-Sepharose column. The high affinity protein was identified as platelet factor 4, based on the amino acid composition. From the low affinity fraction, a beta-thromboglobulin (beta-TG)-like substance and three kinds of unknown proteins, named LA1, LA2, and LA3, were isolated by gel-filtration on a column of Sephadex G-100 or Sephadex G-75 followed by chromatography on a column of Mono S. The molecular weights of LA1, LA2, and LA3 were estimated to be 35,000, 26,000, and 11,000, respectively, on SDS-PAGE. LA2 was identified as a carbohydrate-less LA1, as judged from the amino acid composition and carbohydrate content. The inhibitory activities of these five cationic proteins on the activation of Factor XII and prekallikrein mediated with amylose sulfate, sulfatide and kaolin were different from each other. In the case of kaolin-mediated activation, LA3 was the most potent inhibitor, while platelet factor 4 and beta-TG-like substance did not show any significant inhibitory activity. Moreover, the inhibitory activities of all the cationic proteins were not correlated with their anti-heparin activities. Since these proteins were rapidly liberated from platelets by the action of the stimulants, the present results demonstrate a negative role of platelets in the surface-mediated activation of Factor XII and prekallikrein.  相似文献   

9.
10.
Human blood coagulation factor XI was activated by either autoactivation or thrombin. These reactions occurred only in the presence of negatively charged materials, such as dextran sulfate (approximately Mr 500,000), sulfatide, and heparin. During the activation, factor XI was cleaved at a single Arg-Ile bond by thrombin or factor XIa to produce an amino-terminal 50-kDa heavy chain and a carboxyl-terminal 35-kDa light chain. This activation pattern is identical to that produced by factor XIIa. The addition of a small amount of thrombin and sulfatide to factor XII-deficient plasma produced shorter clotting times than when these agents were added to factor XI/factor XII combined-deficient plasma. These results suggest that the activation of factor XI by thrombin and possibly the autoactivation of factor XI proceed in plasma to lead fibrin clot formation. These reactions may have a role on an appropriate negatively charged surface in normal hemostasis.  相似文献   

11.
12.
Kinetics of activation and autoactivation of human factor XII   总被引:3,自引:0,他引:3  
The kinetics of the enzymic reactions that participate in the contact activation system of human plasma were examined. These reactions are potentiated by dextran sulfate, a negatively charged solute that mimics many of the effects of glass or kaolin on this system. The reactions of reciprocal activation, consisting of activation of factor XII by kallikrein and of prekallikrein by activated factor XII, follow Michaelis-Menten kinetics; values of kcat and Km for each of these reactions were determined in the presence of dextran sulfate and in its absence. In the presence of dextran sulfate, the catalytic efficiency for factor XII activation was increased 11 000-fold, and that for prekallikrein was increased 70-fold. Autoactivation of factor XII in the presence of dextran sulfate also follows Michaelis-Menten kinetics with kcat = 0.033 s-1 and Km = 7.5 microM. This finding supports the concept that autoactivation is an enzymic process, initiated by traces of activated factor XII which are invariably present in factor XII preparations. At prekallikrein and factor XII levels equal to those in plasma, reciprocal activation is approximately 2000-fold more rapid than autoactivation. Thus, reciprocal activation is the predominant mode of factor XII activation in normal plasma.  相似文献   

13.
14.
Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.  相似文献   

15.
The kaolin-mediated reciprocal activation of bovine factor XII and prekallikrein was divided into the following two reactions: the activation of factor XII by plasma kallikrein (reaction 1) and the activation of prekallikrein by factor XIIa (reaction 2). The effects of high-Mr kininogen and kaolin surface on the kinetics of these activation reactions were studied. High-Mr kininogen markedly enhanced the rate of reactions 1 and 2 in the presence of kaolin, and the enhancements were highly dependent on the concentrations of the protein cofactor and amount of kaolin surface. For the activation of factor XII by plasma kallikrein (reaction 1), high-Mr kininogen was required when a low concentration of factor XII and kaolin was used. The molar ratio of the protein cofactor to factor XII for optimal activation was found to be approximately 1:1. The apparent Km value and the kcat/Km value for plasma kallikrein on factor XII were calculated to be 4 nM and 5.2 X 10(7) s-1 X M-1, respectively. The activation of prekallikrein by factor XIIa, (reaction 2) proceeded even in the absence of high-Mr kininogen and kaolin. The addition of the protein cofactor and surface to the reaction mixture remarkably accelerated the reaction, and the apparent Km value for factor XIIa on prekallikrein was reduced from 1 microM to 40 nM. Moreover, the kcat/Km value was altered from 7.3 X 10(4) to 1.1 X 10(6) s-1 X M-1). These results suggest that high-Mr kininogen accelerates the surface-mediated activation of factor XII and prekallikrein by enhancing the susceptibility of factor XII to plasma kallikrein, on the one hand, and the affinity of factor XIIa for prekallikrein, on the other hand. Kaolin may play an important role in the concentration and organization of these components on the negatively charged surface.  相似文献   

16.
In this paper we report the effect of sulfatides on the rate constants of factor XII activation by kallikrein and its isolated light chain (the domain of kallikrein that contains the active site of the enzyme). In the absence of sulfatides, kallikrein and the light chain were equally effective in factor XII activation (k1 = 1.57 X 10(3) M-1 s-1 at pH 7.0). The pH optima were the same (pH 7.0) and the reaction was not affected by variation of the ionic strength. Sulfatides strongly increased the rate constants of factor XIIa formation. In the presence of sulfatides kallikrein was, however, much more active than its light chain. At 330 microM sulfatides, pH 7.0 and 100 mM NaCl the rate constants of factor XII activation were 5.34 X 10(6) M-1 s-1 and 4.17 X 10(4) M-1 s-1 for kallikrein and its light chain, respectively. The pH optimum of factor XII activation by kallikrein in the presence of sulfatides was shifted to pH 6.3, and the reaction became highly ionic-strength-dependent. The rate constant increased considerably at decreasing NaCl concentrations. The optimum pH for light-chain-dependent factor XII activation in the presence of sulfatides remained unaltered and the reaction was not affected by the ionic strength. Binding studies revealed that both kallikrein and factor XII bind to the sulfatide surface, whereas no binding of the light chain of kallikrein was detectable. The isolated heavy chain of kallikrein had the same binding properties as kallikrein, which indicates that the heavy-chain domain contains the functional information for kallikrein binding to sulfatides. Since the effects of pH and ionic strength on the rate constants of kallikrein-dependent factor XII activation in the presence of sulfatides correlated with effects on the binding of kallikrein, it is concluded that under these conditions surface-bound factor XII is activated by surface-bound kallikrein. Our data suggest that sulfatides stimulate kallikrein-dependent factor XII activation by two distinct mechanisms: by making factor XII more susceptible to peptide bond cleavage by kallikrein and by promoting the formation of the enzyme-substrate complex through surface binding of kallikrein and factor XII.  相似文献   

17.
Factor XI binds to high affinity sites on the surface of stimulated platelets where it is efficiently activated by thrombin. Here, we provide evidence that the factor XI binding site on platelets is in the glycoprotein (GP) Ibalpha subunit of the GP Ib-IX-V complex as follows. 1) Bernard-Soulier platelets, lacking the complex, are deficient in factor XI binding; 2) two GP Ibalpha ligands, SZ-2 (a monoclonal antibody) and bovine von Willebrand factor, inhibit factor XI binding to platelets; 3) by surface plasmon resonance, factor XI bound specifically to glycocalicin (the extracellular domain of GP Ibalpha) in Zn(2+)-dependent fashion (K(d)( app) approximately 52 nm). We then investigated whether glycocalicin could promote factor XI activation by thrombin, another GP Ibalpha ligand. In the presence of high molecular weight kininogen (45 nm), Zn(2+) and Ca(2+) ions, thrombin activated factor XI in the presence of glycocalicin at rates comparable with those seen in the presence of dextran sulfate (1 microg/ml). With higher high molecular weight kininogen concentrations (360 nm), the rate of thrombin-catalyzed factor XI activation in the presence of glycocalicin was comparable with that on activated platelets. Thus, factor XI binds to the GP Ib-IX-V complex, promoting its activation by thrombin.  相似文献   

18.
19.
The activation of bovine protein C by factor Xa   总被引:2,自引:0,他引:2  
A complex composed of factor Xa and phospholipid vesicles assembled in the presence of calcium ions catalyzes a discrete cleavage of the heavy chain of bovine protein C that is indistinguishable from that produced by thrombin as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This cleavage generates an active site capable of hydrolyzing small substrates and inactivating factor Va function in the prothrombinase complex. Activation of protein C by factor Xa requires both calcium ions and phospholipid vesicles and proceeds at a rate an order of magnitude greater than that observed for alpha-thrombin in solution. gamma-Carboxyglutamic acid-domainless protein C is not activated by factor Xa, consistent with the requirement for phospholipid and distinguishing this reaction from protein C activation by thrombin. Thrombomodulin serves as a cofactor for the factor Xa-catalyzed reaction, forming a 1:1 complex with factor Xa (apparent Kd = 5.7 X 10(-10) M) and stimulating the saturated rate of protein C activation by factor Xa (kcat = 149 min-1) to levels comparable with the thrombin-thrombomodulin complex. Protein C activation by factor Xa is not inhibited by the specific thrombin inhibitor dansyl-N-(3-ethyl-1,5-pentanediyl)amide but is inhibited by antithrombin III, tripeptide-chloromethyl ketones, and the monoclonal antibody alpha-BFX-2b that is highly specific for factor Xa. These data indicate that thrombomodulin is promiscuous in its role as a cofactor and suggest the existence of an alternative pathway for protein C activation in vivo.  相似文献   

20.
Inositolphospholipid-accelerated activation of prekallikrein by alpha-factor XIIa was determined by measuring the appearance of kallikrein amidolytic activity towards the chromogenic substrate, D-prolyl-phenylalanyl-arginyl p-nitroanilide (S-2302). The activation reaction did not exhibit normal Michaelis-Menten kinetics. The Hill coefficient was found to be 1.6 indicating that the activation followed an allosteric reaction mechanism. The temperature dependence of the reaction showed a thermal transition at 30 degrees C, which in addition to the allosteric reaction mechanism is indicative of a conformational change of prekallikrein following binding to the inositolphospholipid. The reaction exhibited pH optimum at pH 7.2 and ionic strength optimum at 50 mM NaCl. At optimal conditions the apparent KA value and the kcat/KA value for factor XIIa on prekallikrein were calculated to be 73 nM and 9.3 x 10(6) s-1 M-1, respectively. Kinetic constants could not be calculated at salt concentrations higher than the optimal concentrations, as Lineweaver-Burk plots were curvilinear in agreement with the Hill coefficient greater than unity. The activation was inhibited competitively by beta 2-glycoprotein I with a Ki value of 77 nM as determined by the Dixon plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号