首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD63 is a lysosomal membrane protein that belongs to the tetraspanin family. Its carboxyterminal cytoplasmic tail sequence contains the lysosomal targeting motif GYEVM. Strong, tyrosine-dependent interaction of the wild-type carboxyterminal tail of CD63 with the AP-3 adaptor subunit mu 3 was observed using a yeast two-hybrid system. The strength of interaction of mutated tail sequences with mu 3 correlated with the degree of lysosomal localization of similarly mutated human CD63 molecules in stably transfected normal rat kidney cells. Mutated CD63 containing the cytosolic tail sequence GYEVI, which interacted strongly with mu 3 but not at all with mu 2 in the yeast two-hybrid system, localized to lysosomes in transfected normal rat kidney and NIH-3T3 cells. In contrast, it localized to the cell surface in transfected cells of pearl and mocha mice, which have genetic defects in genes encoding subunits of AP-3, but to lysosomes in functionally rescued mocha cells expressing the delta subunit of AP-3. Thus, AP-3 is absolutely required for the delivery of this mutated CD63 to lysosomes. Using this AP-3-dependent mutant of CD63, we have shown that AP-3 functions in membrane traffic from the trans-Golgi network to lysosomes via an intracellular route that appears to bypass early endosomes.  相似文献   

2.
The clathrin adaptors AP-1 and AP-2 bind cargo proteins via two types of motifs: tyrosine-based Yxx phi and dileucine-based [DE]XXXL[LI]. Although it is well established that Yxx phi motifs bind to the mu subunits of AP-1 or AP-2, dileucine motifs have been reported to bind to either the mu or beta subunits of these adaptors as well as the gamma/sigma1 hemicomplex of AP-1. To clarify this controversy, the various subunits of AP-1 and AP-2 were expressed individually and in hemicomplex form in insect cells, and they were used in glutathione S-transferase pull-down assays to determine their binding properties. We report that the gamma/sigma1 or alpha/sigma2 hemicomplexes bound the dileucine-based motifs of several proteins quite strongly, whereas binding by the beta1/mu1 and beta2/mu2 hemicomplexes, and the individual beta or mu subunits, was extremely weak or undetectable. The gamma/sigma1 and alpha/sigma2 hemicomplexes displayed substantial differences in their preference for particular dileucine-based motifs. Most strikingly, an aspartate at position -4 compromised binding to the gamma/sigma1 hemicomplex, whereas minimally affecting binding to alpha/sigma2. There was an excellent correlation between binding to the alpha/sigma2 hemicomplex and in vivo internalization mediated by the dileucine-based sorting signals. These findings provide new insights into the trafficking mechanisms of D/EXXXL[LI]-mediated sorting signals.  相似文献   

3.
The AP-2 complex is a key factor in the formation of endocytic clathrin-coated vesicles (CCVs). AP-2 sorts and packages cargo membrane proteins into CCVs, binds the coat protein clathrin, and recruits numerous other factors to the site of vesicle formation. Structural information on the AP-2 complex and biochemical work have allowed understanding its function on the molecular level, and recent studies showed that cycles of phosphorylation are key steps in the regulation of AP-2 function. The complex is phosphorylated on both large subunits (alpha- and beta2-adaptins) as well as at a single threonine residue (Thr-156) of the medium subunit mu2. Phosphorylation of mu2 is necessary for efficient cargo recruitment, whereas the functional context of the large subunit phosphorylation is unknown. Here, we show that the subunit phosphorylation of AP-2 exhibits striking differences, with calculated half-lives of <1 min for mu2, approximately 25 min for beta2, and approximately 70 min for alpha. We were also able to purify a phosphatase that dephosphorylates the mu2 subunit. The enzyme is a member of the protein phosphatase 2A family and composed of a catalytic Cbeta subunit, a scaffolding Abeta subunit, and a regulatory Balpha subunit. RNA interference knock down of the latter subunit in HeLa cells resulted in increased levels of phosphorylated adaptors and altered endocytosis, showing that a specific PP2A holoenzyme is an important regulatory enzyme in CCV-mediated transport.  相似文献   

4.
The human immunodeficiency virus type 1 virulence protein Nef interacts with the endosomal sorting machinery via a leucine-based motif. Similar sequences within the cytoplasmic domains of cellular transmembrane proteins bind to the adaptor protein (AP) complexes of coated vesicles to modulate protein traffic, but the molecular basis of the interactions between these motifs and the heterotetrameric complexes is controversial. To identify the target of the Nef leucine motif, the native sequence was replaced with either leucine- or tyrosine-based AP-binding sequences from cellular proteins, and the interactions with AP subunits were correlated with function. Tyrosine motifs predictably modulated the interactions between Nef and the mu subunits of AP-1, AP-2, and AP-3; heterologous leucine motifs caused little change in these interactions. Conversely, leucine motifs mediated a ternary interaction between Nef and hemicomplexes containing the sigma1 plus gamma subunits of AP-1 or the sigma3 plus delta subunits of AP-3, whereas tyrosine motifs did not. Similarly, only leucine motifs supported the Nef-mediated association of AP-1 and AP-3 with endosomal membranes in cells treated with brefeldin A. Functionally, Nef proteins containing leucine motifs down-regulated CD4 from the cell surface and enhanced viral replication, whereas those containing tyrosine motifs were inactive. Apparently, the interaction of Nef with the mu subunits of AP complexes is insufficient for function. A leucine-specific mode of interaction that likely involves AP hemicomplexes is further required for Nef activity. The mu and hemicomplex interactions may cooperate to yield high avidity binding of AP complexes to Nef. This binding likely underlies the unusual ability of Nef to induce the stabilization of these complexes on endosomal membranes, an activity that correlates with enhancement of viral replication.  相似文献   

5.
Clathrin-associated protein (AP) complexes have been implicated in the assembly of clathrin coats and the selectivity of clathrin-mediated protein transport processes. We have identified a yeast gene, APS1, encoding a homolog of the small (referred to herein as sigma) subunits of the mammalian AP-1 complex. Sequence comparisons have shown that Aps1p is more similar to the sigma subunit of the Golgi-localized mammalian AP-1 complex than Aps2p, which is more related to the plasma membrane AP-2 sigma subunit. Like their mammalian counterparts, Aps1p and Aps2p are components of distinct, large (> 200 kDa) complexes and a significant portion of the Aps proteins co-fractionate with clathrin-coated vesicles during gel filtration chromatography. Unexpectedly, even though the evolutionary conservation of AP small subunits is substantial (50% identity between mammalian and yeast proteins), disruptions of APS1 (aps1 delta) and APS2 (aps2 delta), individually or in combination, elicit no detectable mutant phenotypes. These data indicate that the Aps proteins are not absolutely required for clathrin-mediated selective protein transport in cells expressing wild type clathrin. However, aps1 delta accentuated the slow growth and alpha-factor pheromone maturation defect of cells carrying a temperature-sensitive allele of clathrin heavy chain (Chc) (chc1-ts). In contrast, aps1 delta did not influence the effects of chc1-ts on vacuolar protein sorting or receptor-mediated endocytosis. The aps2 delta mutation resulted in a slight effect on chc1-ts cell growth but had no additional effects. The growth defect of cells completely lacking Chc was compounded by aps1 delta but not aps2 delta. These results comprise evidence that Aps1p is involved in a subset of clathrin functions at the Golgi apparatus. The effect of aps1 delta on cells devoid of clathrin function suggests that Aps1p also participates in clathrin-independent processes.  相似文献   

6.
Here we report the identification and characterization of AP-4, a novel protein complex related to the heterotetrameric AP-1, AP-2, and AP-3 adaptors that mediate protein sorting in the endocytic and late secretory pathways. The key to the identification of this complex was the cloning and sequencing of two widely expressed, mammalian cDNAs encoding new homologs of the adaptor beta and sigma subunits named beta4 and sigma4, respectively. An antibody to beta4 recognized in human cells an approximately 83-kDa polypeptide that exists in both soluble and membrane-associated forms. Gel filtration, sedimentation velocity, and immunoprecipitation experiments revealed that beta4 is a component of a multisubunit complex (AP-4) that also contains the sigma4 polypeptide and two additional adaptor subunit homologs named mu4 (mu-ARP2) and epsilon. Immunofluorescence analyses showed that AP-4 is associated with the trans-Golgi network or an adjacent structure and that this association is sensitive to the drug brefeldin A. We propose that, like the related AP-1, AP-2, and AP-3 complexes, AP-4 plays a role in signal-mediated trafficking of integral membrane proteins in mammalian cells.  相似文献   

7.
Lysosomal protein trafficking is a fundamental process conserved from yeast to humans. This conservation extends to lysosome-like organelles such as mammalian melanosomes and insect eye pigment granules. Recently, eye and coat color mutations in mouse (mocha and pearl) and Drosophila (garnet and carmine) were shown to affect subunits of the heterotetrameric adaptor protein complex AP-3 involved in vesicle trafficking. Here we demonstrate that the Drosophila eye color mutant ruby is defective in the AP-3beta subunit gene. ruby expression was found in retinal pigment and photoreceptor cells and in the developing central nervous system. ruby mutations lead to a decreased number and altered size of pigment granules in various cell types in and adjacent to the retina. Humans with lesions in the related AP-3betaA gene suffer from Hermansky-Pudlak syndrome, which is caused by defects in a number of lysosome-related organelles. Hermansky-Pudlak patients have a reduced skin pigmentation and suffer from internal bleeding, pulmonary fibrosis, and visual system malfunction. The Drosophila AP-3beta adaptin also appears to be involved in processes other than eye pigment granule biogenesis because all ruby allele combinations tested exhibited defective behavior in a visual fixation paradigm.  相似文献   

8.
A membrane fraction enriched in vesicles containing the adaptor protein (AP) -3 cargo zinc transporter 3 was generated from PC12 cells and was used to identify new components of these organelles by mass spectrometry. Proteins prominently represented in the fraction included AP-3 subunits, synaptic vesicle proteins, and lysosomal proteins known to be sorted in an AP-3-dependent way or to interact genetically with AP-3. A protein enriched in this fraction was phosphatidylinositol-4-kinase type IIalpha (PI4KIIalpha). Biochemical, pharmacological, and morphological analyses supported the presence of PI4KIIalpha in AP-3-positive organelles. Furthermore, the subcellular localization of PI4KIIalpha was altered in cells from AP-3-deficient mocha mutant mice. The PI4KIIalpha normally present both in perinuclear and peripheral organelles was substantially decreased in the peripheral membranes of AP-3-deficient mocha fibroblasts. In addition, as is the case for other proteins sorted in an AP-3-dependent way, PI4KIIalpha content was strongly reduced in nerve terminals of mocha hippocampal mossy fibers. The functional relationship between AP-3 and PI4KIIalpha was further explored by PI4KIIalpha knockdown experiments. Reduction of the cellular content of PI4KIIalpha strongly decreased the punctate distribution of AP-3 observed in PC12 cells. These results indicate that PI4KIIalpha is present on AP-3 organelles where it regulates AP-3 function.  相似文献   

9.
The adaptor protein complex-1 (AP-1) sorts and packages membrane proteins into clathrin-coated vesicles (CCVs) at the TGN and endosomes. Here we show that this process is highly regulated by phosphorylation of AP-1 subunits. Cell fractionation studies revealed that membrane-associated AP-1 differs from cytosolic AP-1 in the phosphorylation status of its beta1 and mu1 subunits. AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)-mediated dephosphorylation of its beta1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated beta1 compared with phosphorylated mu1. Once on the membrane, the mu1 subunit undergoes phosphorylation, which results in a conformation change, as revealed by increased sensitivity to trypsin. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of mu1 (and mu2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Immunodepletion and okadaic acid inhibition studies demonstrate that PP2A is the cytosolic cofactor for Hsc-70-mediated adaptor uncoating. A model is proposed where cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol.  相似文献   

10.
K Prasad  J H Keen 《Biochemistry》1991,30(22):5590-5597
The clathrin assembly protein complex AP-2 is a multimeric subunit complex consisting of two 100-115-kDa subunits known as alpha and beta and 50- and 16-kDa subunits. The subunits have been dissociated and separated by ion-exchange chromatography in 7.5 M urea. Fractions highly enriched in either the alpha or beta subunit were obtained. The alpha fraction interacted with clathrin as evidenced by its ability to bind to preassembled clathrin cages. It also reacted with dissociated clathrin trimers under conditions that favor assembly of coat structures, but did not yield discrete clathrin polygonal lattices. The enriched beta fraction (containing small amounts of alpha) reacted with clathrin to yield intact coats with the incorporation of approximately equivalent amounts of alpha and beta subunits into the polymerized species; excess free beta subunit was unreactive. The AP-2 complex was also completely dissociated in a highly denaturing solvent, 6 M Gdn.HCl, and the constituent subunits of 100-115, 50, and 16 kDa were separated by gel filtration. In a coassembly assay with clathrin, the clathrin polymerizing activity was exclusively associated with the 100-kDa subunit fraction with stoichiometric incorporation of both alpha and beta subunits of 100 kDa into the polymerized coats, and with no requirement for 50- or 16-kDa subunits. These observations demonstrate that the assembly activity of the complex is associated with the alpha and beta subunits and suggest that both subunits, through independent interactions with clathrin, are required for expression of complete lattice assembly activity.  相似文献   

11.
Most epithelial cells contain two AP-1 clathrin adaptor complexes. AP-1A is ubiquitously expressed and involved in transport between the TGN and endosomes. AP-1B is expressed only in epithelia and mediates the polarized targeting of membrane proteins to the basolateral surface. Both AP-1 complexes are heterotetramers and differ only in their 50-kD mu1A or mu1B subunits. Here, we show that AP-1A and AP-1B, together with their respective cargoes, define physically and functionally distinct membrane domains in the perinuclear region. Expression of AP-1B (but not AP-1A) enhanced the recruitment of at least two subunits of the exocyst complex (Sec8 and Exo70) required for basolateral transport. By immunofluorescence and cell fractionation, the exocyst subunits were found to selectively associate with AP-1B-containing membranes that were both distinct from AP-1A-positive TGN elements and more closely apposed to transferrin receptor-positive recycling endosomes. Thus, despite the similarity of the two AP-1 complexes, AP-1A and AP-1B exhibit great specificity for endosomal transport versus cell polarity.  相似文献   

12.
The synaptic vesicle protein synaptotagmin was proposed to act as a major docking site for the recruitment of clathrin coats implicated in endocytosis, including the recycling of synaptic vesicles. We show here that the C2B domain of synaptotagmin binds mu2- and alpha-adaptin, two of the four subunits of the endocytic adaptor complex AP-2. mu2 represents the major interacting subunit of AP-2 within this complex. Its binding to synaptotagmin is mediated by a site in subdomain B that is distinct from the binding site for tyrosine-based sorting motifs located in subdomain A. The presence of the C2B domain of synaptotagmin at the surface of liposomes enhances the recruitment of AP-2 and clathrin. Conversely, perturbation of the interaction between synaptotagmin and AP-2 by synprint, the cytoplasmic synaptotagmin-binding domain of N-type calcium channels, inhibits transferrin internalization in living cells. We conclude that a dual interaction of synaptotagmin with the clathrin adaptor AP-2 plays a key physiological role in the nucleation of endocytic clathrin-coated pits.  相似文献   

13.
The heterotetrameric AP2 adaptor (alpha, beta 2, mu 2 and sigma 2 subunits) plays a central role in clathrin-mediated endocytosis. We present the protein recruitment function and 1.7 A resolution structure of its beta 2-appendage domain to complement those previously determined for the mu 2 subunit and alpha appendage. Using structure-directed mutagenesis, we demonstrate the ability of the beta 2 appendage alone to bind directly to clathrin and the accessory proteins AP180, epsin and eps15 at the same site. Clathrin polymerization is promoted by binding of clathrin simultaneously to the beta 2-appendage site and to a second site on the adjacent beta 2 hinge. This results in the displacement of the other ligands from the beta 2 appendage. Thus clathrin binding to an AP2-accessory protein complex would cause the controlled release of accessory proteins at sites of vesicle formation.  相似文献   

14.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

15.
The sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present in the cytosolic tails of the proteins. A subset of these signals conform to the [DE]XXXL[LI] consensus motif and mediate sorting via interactions with heterotetrameric adaptor protein (AP) complexes. However, the identity of the AP subunits that recognize these signals remains controversial. We have used a yeast three-hybrid assay to demonstrate that [DE]XXXL[LI]-type signals from the human immunodeficiency virus negative factor protein and the lysosomal integral membrane protein II interact with combinations of the gamma and sigma1 subunits of AP-1 and the delta and sigma3 subunits of AP-3, but not the analogous combinations of AP-2 and AP-4 subunits. The sequence requirements for these interactions are similar to those for binding to the whole AP complexes in vitro and for function of the signals in vivo. These observations reveal a novel mode of recognition of sorting signals involving the gamma/delta and sigma subunits of AP-1 and AP-3.  相似文献   

16.
The beta 1 and beta 2 subunits are the closely-related large chains of the trans-Golgi network AP-1 and the plasma membrane AP-2 clathrin-associated protein complexes, respectively. Recombinant beta 1 and beta 2 subunits have been generated in Escherichia coli. It was found that, in the absence of all the other AP subunits, beta 1 and beta 2 interact with clathrin and drive the efficient assembly of clathrin coats. In addition, beta 2 subunits and AP complexes compete for the same clathrin binding site. The appearance of the clathrin/beta coats is the same as the barrel-shaped structures formed with native AP complexes. It is proposed that the principal function of the beta subunits is to initiate coat formation, while the remaining subunits of the AP complexes have other roles in coated pit and coated vesicle function.  相似文献   

17.
Although interactions between the mu2 subunit of the clathrin adaptor protein complex AP-2 and tyrosine-based internalization motifs have been implicated in the selective recruitment of cargo molecules into coated pits, the functional significance of this interaction for endocytosis of many types of membrane proteins remains unclear. To analyze the function of mu2-receptor interactions, we constructed an epitope-tagged mu2 that incorporates into AP-2 and is targeted to coated pits. Mutational analysis revealed that Asp176 and Trp421 of mu2 are involved in the interaction with internalization motifs of TGN38 and epidermal growth factor (EGF) receptor. Inducible overexpression of mutant mu2, in which these two residues were changed to alanines, resulted in metabolic replacement of endogenous mu2 in AP-2 complexes and complete abrogation of AP-2 interaction with the tyrosine-based internalization motifs. As a consequence, endocytosis of the transferrin receptor was severely impaired. In contrast, internalization of the EGF receptor was not affected. These results demonstrate the potential usefulness of the dominant-interfering approach for functional analysis of the adaptor protein family, and indicate that clathrin-mediated endocytosis may proceed in both a mu2-dependent and -independent manner.  相似文献   

18.
beta B2- and gamma B-crystallins of vertebrate eye lens are 2-domain proteins in which each domain consists of 2 Greek key motifs connected by a linker peptide. Although the folding topologies of beta B2- and gamma B-domains are very similar, gamma B-crystallin is always monomeric, whereas beta B2-crystallin associates to homodimers. It has been suggested that the linker or the protruding N- and C-terminal arms of beta B2-crystallin (not present in gamma B) are a necessary requirement for this association. In order to investigate the role of these segments for dimerization, we constructed two beta B2 mutants. In the first mutant, the linker peptide was replaced with the one from gamma B (beta B2 gamma L). In the second mutant, the N- and C-terminal arms of 15- and 12-residues length were deleted (beta B2 delta NC). The beta B2 gamma L mutant is monomeric, whereas the beta B2 delta NC mutant forms dimers and tetramers that cannot be interconverted without denaturation. The spectral properties of the beta B2 mutants, as well as their stabilities against denaturants, resemble those of wild-type beta B2-crystallin, thus indicating that the overall peptide fold of the subunits is not changed significantly. We conclude that the peptide linker in beta B2-crystallin is necessary for dimerization, whereas the N- and C-terminal arms appear to be involved in preventing the formation of higher homo-oligomers.  相似文献   

19.
A role for clathrin in AP-3–dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3–dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain–FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and colocalizes with endogenous and recombinant FKBP chimeric clathrin polypeptides in PC12-cell endosomes. AP-3 displays, however, a divergent behavior from AP-1, AP-2, and clathrin chains. AP-3 cofractionates with clathrin-coated vesicle fractions isolated from PC12 cells even after clathrin function is acutely inhibited by AP20187. We predicted that AP20187 would inhibit AP-3 vesicle formation from endosomes after a brefeldin A block. AP-3 vesicle formation continued, however, after brefeldin A wash-out despite impairment of clathrin function by AP20187. These findings indicate that AP-3–clathrin association is dispensable for endosomal AP-3 vesicle budding and suggest that endosomal AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis.  相似文献   

20.
AP-4 is a member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post-Golgi compartments. This complex consists of four subunits (epsilon, beta4, mu4 and sigma4) and localizes to the cytoplasmic face of the trans-Golgi network (TGN). Here, we show that the recruitment of endogenous AP-4 to the TGN in vivo is regulated by the small GTP-binding protein ARF1. In addition, we demonstrate a direct interaction of the epsilon and mu4 subunits of AP-4 with ARF1. epsilon binds only to ARF1-GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, mu4 binds equally well to the GTP- and GDP-bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP-4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号