首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
Azotobacter chroococcum was isolated from straw-amended soil and found to utilize 4-hydroxybenzoic acid, resorcinol, pyrocatechol and vanillic acid as sole carbon source. Growth and nitrogenase activity ofA. chroococcum were supported by 8, 6 and 4 mmol/L of 4-hydroxybenzoic acid, resorcinol and pyrocatechol, respectively. The generation time of 1.71 h in 4-hydroxybenzoic acid did not significantly differ from the generation time of 1.64 h, observed when grown in mannitol. 4-Hydroxybenzoic acid was utilized rapidly. However, the decomposition of other tested phenolic compounds set in only slowly. It was concluded that this isolate has good potential to utilize some phenolic compounds released during biodegradation of plant wastes.  相似文献   

2.
Several compounds were separated from the antifungal materials produced in Edward VII apple fruits attacked by the brown rot organism Sclerotinia fructigena. Six phenolic compounds were isolated in the crude state by column chromatography and their fungicidal properties examined. Two of the phenolic acids present were purified and identified as 4-hydroxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid. These phenolic compounds were shown to arise from the action of the pathogen on the juice of the fruit and not from the peel or the juice-free pulp.  相似文献   

3.
3,5-Dihalo-4-hydroxybenzoic acids enhanced adventitious root formation in mung bean (Vigna radiata L.) cuttings. 3,5-Diiodo-4-hydroxybenzoic acid was more active than 3,5-dichloro-4-hydroxybenzoic acid, increasing the number of roots formed by about 4-fold. 2,4-Dinitrophenol also enhanced significantly adventitious root formation in mung bean cuttings. The phenolic compounds were active with or without indole-3-acetic acid. The possible mechanism by which these phenolic compounds enhance rooting is discussed.Abbreviations CCCP carbonyl cyanide 3-chlorophenylhydrazone - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DNP 2,4-dinitrophenol  相似文献   

4.
Degradation of phenylalanine and tyrosine by Sporobolomyces roseus   总被引:3,自引:2,他引:1  
Ammonia-lyase activity for l-phenylalanine, m-hydroxyphenylalanine and l-tyrosine was demonstrated in cell-free extracts of Sporobolomyces roseus. Cultures of this organism converted dl-[ring-14C]phenylalanine and l-[U-14C]tyrosine into the corresponding cinnamic acid. Tracer studies showed that these compounds were further metabolized to [14C]protocatechuic acid. Benzoic acid and p-hydroxybenzoic acid were intermediates in this pathway. Washed cells of the organism readily utilized cinnamic acid, p-coumaric acid, caffeic acid, benzoic acid and p-hydroxybenzoic acid. Protocatechuic acid was the terminal aromatic compound formed during the metabolism of these compounds. The cells of S. roseus were able to convert m-coumaric acid into m-hydroxybenzoic acid, but the latter compound, which accumulated in the medium, was not further metabolized. 4-Hydroxycoumarin was identified as the product of o-coumaric acid metabolism by this organism.  相似文献   

5.
A bacterial strain capable of utilizing a mixture containing 2-hydroxybenzoic acid (2-HBA), 3-hydroxybenzoic acid (3-HBA) and 4-hydroxybenzoic (4-HBA) acid was isolated through enrichment from a soil sample. Based on 16SrDNA sequencing, the microorganism was identified as Acinetobacter calcoaceticus. The sequence of biodegradation of the three isomers when provided as a mixture (0.025%, w/v each) was elucidated. The dihydroxylated metabolites formed from the degradation of 2-HBA, 3-HBA and 4-HBA were identified as catechol, gentisate and protocatechuate, respectively, using the cell-free supernatant and cell-free crude extracts. Monooxygenases and dioxygenases that were induced in the cells of Acinetobacter calcoaceticus in response to growth on mixture containing 2-HBA, 3-HBA and 4-HBA could be detected in cell-free extracts. These data revealed the pathways operating in Acinetobacter calcoaceticus for the sequential metabolism of monohydroxybenzoate isomers when presented as a mixture.  相似文献   

6.
It was found that when Rhodotorula rubra IFO 0911 was grown in a phenylalanine medium, benzoic acid and p-hydroxybenzoic acid besides cinnamic acid were formed in the cultured both. The conversions of cinnamic acid into benzoic acid and of benzoic acid into p-hydroxybenzoic acid, and the degradation of p-hydroxybenzoic acid were demonstrated in intact cells of Rhodotorula rubra. These activities were observed in the cells grown on various media, including the medium containing no phenylalanine, and were found to be distributed widely in Rhodotorula. The cells of Rhodotorula rubra were also able to degrade p-coumaric acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), p-hydroxyphenyl-acetic acid, 3-methoxy-4-hydroxycinnamic acid (ferulic acid) and 3-methoxy-4-hydroxybenzoic acid (vanillic acid). From these results, the metabolic pathways for phenylalanine and tyrosine in Rhodotorula were discussed.  相似文献   

7.
The intermediate of the aromatization of 4-oxocyclohexanecar-boxylic acid (OHA) to 4-hydroxybenzoic acid (HA) by Coryne-bacterium cyclohexanicum was identified as (+)-4-oxocyclohex-2-enecarboxylic acid (O2A) using a combined system of gas-liquid chromatography (GLC) and a mass spectrometer and polarimeter.  相似文献   

8.
Pseudomonas fluorescens strain FE2 isolated in the presence of ferulic acid was able to grow on hydroxylated and methoxylated compounds bearing the hydroxyl group in the para position. By ethylmethansulphonate (EMS) and transposon mutagenesis, mutants unable to utilize ferulic acid have been selected. The metabolic characterization of the wild-type strain and its mutants indicates that ferulic acid was degraded through the formation of vanillic acid. Mutant FE2B in co-oxidation experiments with glutamate, is able to transform ferulic and dihydroferulic acid into vanillic acid, 4-hydroxycinnamic acid and 3 (4-hydroxyphenyl)-propanoic acid into 4-hydroxybenzoic acid, and 3-hydroxycinnamic acid into 3-hydroxybenzoic acid. The bioconversion of hydroxylated aromatic substrates by the FE2B mutants suggests that the presence of a hydroxyl group on the aromatic ring is required for deacetylase activity.  相似文献   

9.
When transformed with a recombinant vector carrying the ubiC gene (encoding chorismate pyruvate-lyase, EC 4.1.3.27) the triple mutant (Phe, Trp, Tyr) Klebsiella pneumoniae 62-1 excretes 4-hydroxybenzoic acid instead of chorismic acid. The recombinant strain can be used to produce in high yield specifically ring-labelled 4-hydroxybenzoic acid from isotopically labelled glucose.  相似文献   

10.
The metabolic products of m-hydroxybenzoic acid formed by certain Pseudomonas, Micrococcus, and Bacterium strains which possess oxidizing ability of this acid were detected by paperchromatography. It was recognized that protocatechuic acid or gentisic acid are intermediary metabolites of m-hydroxybenzoic acid by these bacteria and the both acids are not detected in one cultural broth.  相似文献   

11.
3-Amino-L-tyrosine was found to be a substrate of mushroom tyrosinase, contrary to what had previously been reported in the literature. A series of amino derivatives of benzoic acid were tested as substrates and inhibitors of the enzyme. 3-Amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid and 3,4-diaminobenzoic acid were oxidized by this enzyme, as previously reported for Neurospora crassa tyrosinase, but 4-aminobenzoic acid and 3-aminobenzoic acid were not. Interestingly, 3-amino-4-hydroxybenzoic acid was oxidized five times faster than 4-amino-3-hydroxybenzoic acid, confirming the importance of proton transfer from the hydroxyl group at C-4 position. All compounds inhibited the monophenolase activity but their effect on the diphenolase activity was small or negligible. 3-Amino-4-hydroxybenzoic acid was a stronger inhibitor than 4-amino-3-hydroxybenzoic acid, indicating their different binding affinity to the oxy form of the enzyme. Both, however, were weaker inhibitors than 3-amino-L-tyrosine, 4-methoxy-o-phenylenediamine and 3,4-diaminobenzoic acid, which was the strongest inhibitor from among the compounds tested. These results show that the relative positioning of the amino group and the hydroxy group in o-aminophenols with respect to the side chain is important both for binding to the dicopper center and for catalysis.  相似文献   

12.
The relationship between exopolysaccharide (EPS) production by Azotobacter vinelandii ATCC 12837 from 4-hydroxybenzoic acid as sole carbon source and other physiological parameters was investigated. In relation to growth, Azotobacter needed more time in 4-hydroxybenzoic acid to reach levels of biomass similar to those obtained when sugars were used, although the phenolic compound led to a more extensive exponential phase. The encystment process was initiated after cells had grown for 24 h, in which small amounts of EPS were synthesized and poly-β-hydroxybutyrate (PHB) accumulation began. Both polymers, EPS and PHB, showed a similar evolution with time, as well as the formation of cysts, which points out the existence of a relation between these parameters. This was corroborated by a statistical study, in which significant correlations (P<0.05) were observed when each parameter was compared to the two others. Journal of Industrial Microbiology & Biotechnology (2002) 29, 129–133 doi:10.1038/sj.jim.7000288 Received 01 February 2002/ Accepted in revised form 13 June 2002  相似文献   

13.
To alleviate the stress of continuous cropping for cucumber continuous cropping (CCC) system, a beneficial fungus Trichoderma harzianum SQR-T037 (SQR-T037) was isolated and applied to soil to degrade allelochemicals exuded from cucumber plants in a Rhizobox experiment. The following phenolic acids (PAs), classified as allelochemicals, were isolated and identified from cucumber rhizospheres: 4-hydroxybenzoic acid, vanillic acid, ferulic acid, benzoic acid, 3-phenylpropionic acid, and cinnamic acid. Mixed PAs added in potato dextrose broth, each with 0.2 gram per liter, were completely degraded by SQR-T037 after 170 h of incubation. In Rhizobox experiments, inoculation of SQR-T037 in the CCC soil also degraded the PAs exuded from cucumber plant roots. This degradation was 88.8% for 4-hydroxybenzoic acid, 90% for vanillic acid, 95% for benzoic acid, and 100% for ferulic acid, 3-phenylpropionic acid, and cinnamic acid at 45 days after plantation. Simultaneously, a significant (p ≥ 0.05) decrease in the disease index of Fusarium wilt and an increase in dry weights of cucumber plants were obtained in pot experiments by application of SQR-T037. This was mostly attributed to degradation of PAs exuded from cucumber roots in CCC soil by SQR-T037 and alleviation of the allelopathic stress. Application of beneficial microorganisms, such as SQR-T037 that biodegrades allelochemicals, is a highly efficient way to resolve the problems associated with continuous cropping system.  相似文献   

14.
Presence of 4-hydroxybenzoic acid in the mesocarp walls of 22 genera of Arecaceae (Palmae) was investigated using a TLC/UV spectra analysis method and confirmed by HPLC and ESI-MS. The genera collected mainly belong to the Copryphoideae and Arecoideae subfamilies. All the investigated genera possess an unusually high amount of 4-hydroxybenzoic acid, which varied from 5.6 mg/g dry wt cell wall material (CWM) (Areca catechu) to 1.0 mg/g dry wt CWM (Roystonea regia). Apart from 4-hydroxybenzoic acid, ferulic acid is also found in all the genera studied along with some traces of 4-coumarate. This work presents an overview of the major wall-bound phenolics found in the mesocarp of different palms, and on the basis of this occurrence, a possible hypothesis for considering 4-hydroxybenzoic acid as a chemotaxonomic marker of this particular family can be drawn.  相似文献   

15.
E. Vieitez    E. Seoame    D. V. Gesto    C. Mato    A. Vazquez  A. Carnicer 《Physiologia plantarum》1966,19(2):294-307
Woody cuttings of Ribes rubrum, an easy plant to root, were extracted with methanol. One fraction of this extract was both water and ether soluble; a part of it was only water soluble. From the water and ether soluble fraction a crystalline compound was isolated which was fully identified with p-hydroxybenzoic acid (PHB) by m.p., mixed m.p., infrared spectrum, ultraviolet absorption in neutral and alkaline methanol and chemical analyses. For Avena coleoptiles straight growth test, p-hydroxyhenzoic acid was found to have a significant growth promoting activity in the range 20–100 μg/ml. and it showed strong growth inhibition at concentrations higher than 200 μg/ml. From the same extract fraction a phenolic ester was isolated by paper chromatography which showed a weak growth inhibiting activity. This compound was identified as an ester of p-hydroxybenzoic acid by micro-scale reactions. From the extract soluble only in water further amounts of crystalline p-hydroxybenzoic acid were obtained by alkaline hydrolysis. This PHB may have arisen from the breakdown of pelargonidin glucosides.  相似文献   

16.
A literature review is given on growth of yeasts on benzene compounds and on the catabolic pathways involved. Additionally, a yeast collection was screened for assimilation of phenol and 3-hydroxybenzoic acid. Fifteen ascomycetous and thirteen basidiomycetous yeast species were selected and were tested for growth on 84 benzene compounds. It appeared that 63 of these compounds supported growth of one or more yeast species. The black yeastExophiala jeanselmei assimilated 54 of these compounds.The catechol branch of the 3-oxoadipate pathway and its hydroxyhydroquinone variant were involved in phenol and resorcinol catabolism of ascomycetes as well as of basidiomycetes. However, these two groups of yeasts showed characteristic differences in hydroxybenzoate catabolism. In the yeastlike fungusE. jeanselmei and in basidiomycetes of the generaCryptococcus, Leucosporidium andRhodotorula, the protocatechuate branch of the 3-oxoadipate pathway was induced by growth on 3- and 4-hydroxybenzoic acids. In threeTrichosporon species and in all ascomycetous yeasts tested, 4-hydroxybenzoic acid was catabolyzed via protocatechuate and hydroxyhydroquinone. These yeasts were unable to cleave protocatechuate. 3-Hydroxybenzoic and 3-hydroxycinnamic acids were catabolized in ascomycetous yeasts via the gentisate pathway, but in basidiomycetes via protocatechuate.Incomplete oxidation of phenol, some chlorophenols, cresols and xylenols was observed in cultures ofCandida parapsilosis growing on hydroquinone. Most compounds transformed by the growing culture were also converted by the phenol monooxygenase present in cell-free extracts of this yeast. They did not support growth.The relationship between the ability of ascomycetous yeasts to assimilate n-alkanes, amines and benzene compounds, and the presence of Coenzyme Q9 is discussed.  相似文献   

17.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

18.
Static bioassays were conducted on Chlorella pyrenoidosa using vanillic acid, syringic acid, and 4-hydroxybenzoic acid. At 0.1 mM, vanillic and 4-hydroxybenzoic acid stimulated cultural growth compared to the control. For both compounds, concentrations of 0.3 mM and 0.4 mM were initially inhibitory, then after 3–5 days became stimulatory compared to control. Bioassays with syringic acid at 0.1 mM, 0.3 mM, and 0.4 mM were all stimulatory. At 0.5 mM–2.5 mM, syringic acid resulted in 100% mortality in C. pyrenoidosa. Bacteria-free cultures of C. pyrenoidosa were stimulated by vanillic acid at 0.1 mM and inhibited at 0.4 mM with no shift in response observed. It was suggested that degradation of test material is responsible for the shift from inhibition to stimulation. All three compounds are reported to change from enzyme synergists to antagonists as concentrations are reduced. Because these compounds are major components of humic material, it is suggested that they have the potential to confound studies involving interaction of toxins and humics.  相似文献   

19.
Abstract a Micrococcus sp. isolated by isophthalate enrichment, utilized 8 of the 13 substituted benzoic acids tested as the sole source of carbon and energy. The organism degraded benzoic acid and anthranilic acid through the intermediate formation of catechol. While salicylate is metabolized through genetisic acid, p -hydroxybenzoic acid is degraded through protocatechuic acid. The organism grew well on isophthalate but failed to utilize phthalate and terphthalate. Catechol disoxygenase, gentisate dioxygenase and protocatechuate dioxygenase activities were shown in the cell-free extracts. Catechol and protocatechuate are further metabolized through an ortho -cleavage pathway.  相似文献   

20.
The phenolic antioxidants, gallic acid, vanillic acid, protocatechuic acid, 4-hydroxybenzoic acid, catechin, caffeic acid, and chlorogenic acid were studied for their effects on ochratoxin A (OTA) production and fungal growth of ochratoxigenic Aspergilli. Of the 12 strains tested, which included A. alliaceus, A. lanosus, A. ochraceus, A. albertensis, A. melleus, A. sulphureus, A. carbonarius, A. elegans, and A. sclerotiorum, the greatest inhibition of OTA production was seen in A. sulphureus, A. elegans, and A. lanosus. Vanillic acid and 4-hydroxybenzoic acid were the most inhibitory to both OTA production and growth of most of the strains tested. However, A.␣ochraceus was not inhibited by either compound, and A. carbonarius was not inhibited by vanillic acid. The effect of each compound on OTA production and growth differed among strains and generally was variable, suggesting that species-specific OTA production and response to phenolic compounds may be influenced by different ecological and developmental factors. In addition, inhibition of OTA production by antioxidant compounds may be useful in determining biosynthetic and regulatory genes involved in both OTA production and stress response in ochratoxigenic Aspergilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号