首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of calmodulin (CaM) on inositol 1,4,5-trisphosphate (InsP3) 3-kinase activity in pig aortic smooth muscle were examined. The cytosol fraction of muscle cells, containing 1.2-2.0 micrograms of CaM/mg of cytosol protein (thus 0.12-0.2%, w/w), showed a Ca2+-dependent InsP3 3-kinase activity, and there was no further activation by exogenous addition of CaM purified from dog brain. (NH4)2SO4 fractionation of the cytosol fraction revealed that a 20-60%-satd.-(NH4)2SO4 fraction was rich in the enzyme activity, and the activity without exogenous CaM was still dependent on Ca2+, although the CaM content in this fraction was minute (0.013-0.016%, w/w). The kinase activity observed in the absence of exogenous CaM became insensitive to Ca2+ when a 20-60%-satd.-(NH4)2SO4 fraction was applied to a DEAE-cellulose column, but exogenous addition of CaM increased the enzyme activity from 80-120 to 450 pmol/min per mg of protein, with addition of 10 microM free Ca2+. A fraction separated by DEAE-cellulose chromatography was applied to a CaM affinity column. The kinase activity was retained on the column in the presence of Ca2+, and was eluted by lowering the free Ca2+ concentration by adding EGTA. These results directly show that CaM activates InsP3 3-kinase activity and the enzyme becomes sensitive to Ca2+.  相似文献   

2.
1. The Ca2+/calmodulin (CaM) independent activity of inositol 1,4,5-trisphosphate (InsP3) 3-kinase in macrophages could be separated from the dependent activity by serial column chromatography, gel filtration, Orange A and DEAE-5PW. 2. An InsP3 analog which has an aminobenzoyl group on the 2nd carbon of the inositol ring inhibited the conversion of [3H]InsP3 to [3H]InsP4 (inositol 1,3,4,5-tetrakisphosphate) in a dose-dependent manner. The concentration required for half-maximal inhibition (IC50) with the Ca2+/CaM independent enzyme activity was also dependent on the free Ca2+ concentration, as with the dependent activity. 3. These results suggest that a conformational change in the enzyme occurs in response to a change in free Ca2+ concentration, and thus the potency to recognize the InsP3 analog would change, even when the Ca2+/CaM independent enzyme activity was used.  相似文献   

3.
Inositol 1,4,5-trisphosphate (InsP3) 3-kinase catalyses the phosphorylation of InsP3 to inositol 1,3,4,5-tetrakisphosphate (InsP4). InsP3 3-kinase activity was stimulated by Ca2+ in the presence of calmodulin (CaM) and the protein was associated with two silver-stained bands which migrated with an apparent Mr of approx. 50,000 on SDS/polyacrylamide gels. Upon limited proteolysis with trypsin, the native InsP3 3-kinase was converted into polypeptides of Mr 44,000 and 36,000. Both tryptic fragments displayed InsP3 3-kinase activity that was Ca2+/CaM-sensitive. A cDNA clone, C5, that encodes the C-terminal part of the InsP3 3-kinase, was isolated by immunoscreening of a rat brain cDNA library. The 5' end of this clone was used in turn to probe the same library, yielding a clone (CP16) containing the entire coding sequence of InsP3 3-kinase. The encoding protein of 459 amino acids (calculated Mr 50,868) has several putative phosphorylation sites for cyclic AMP-dependent protein kinase, protein kinase C and CaM-dependent protein kinase II. When clone C5 was expressed in Escherichia coli, the truncated fusion protein showed Ca2+/CaM-sensitive InsP3 3-kinase activity. Our data demonstrate that the N-terminal part of the protein is not essential for either enzymic or CaM-regulatory properties.  相似文献   

4.
Inositol 1,4,5-trisphosphate (InsP3) 3-kinase catalyses the ATP-dependent phosphorylation of InsP3 to inositol 1,3,4,5-tetrakisphosphate (InsP4). InsP3 3-kinase was purified from rat brain by Blue-Sepharose, phosphocellulose and calmodulin (CaM)-Sepharose affinity chromatography. The purified enzyme was stimulated by Ca2+/CaM by 3-6-fold as compared with the activity measured in the presence of EGTA. Rat brain InsP3 3-kinase activity was associated with two silver-stained bands of about equal activity which migrated with an apparent Mr of 50,000 on SDS/polyacrylamide gels. InsP3 3-kinase activity from rat brain could be immunoprecipitated by an antiserum against the SDS/PAGE-purified 50,000-Mr protein doublet. InsP3 kinase activity from bovine brain and the InsP3 5-phosphatase activity from rat brain were not immunoprecipitated. On Western blot, the human brain crude InsP3 3-kinase reacted specifically, but less strongly than the rat brain enzyme, with the antiserum.  相似文献   

5.
N-methyl-D-aspartic acid receptor-dependent long term potentiation (LTP), a model of memory formation, requires Ca2+·calmodulin-dependent protein kinase II (αCaMKII) activity and Thr286 autophosphorylation via both global and local Ca2+ signaling, but the mechanisms of signal transduction are not understood. We tested the hypothesis that the Ca2+-binding activator protein calmodulin (CaM) is the primary decoder of Ca2+ signals, thereby determining the output, e.g. LTP. Thus, we investigated the function of CaM mutants, deficient in Ca2+ binding at sites 1 and 2 of the N-terminal lobe or sites 3 and 4 of the C-terminal CaM lobe, in the activation of αCaMKII. Occupancy of CaM Ca2+ binding sites 1, 3, and 4 is necessary and sufficient for full activation. Moreover, the N- and C-terminal CaM lobes have distinct functions. Ca2+ binding to N lobe Ca2+ binding site 1 increases the turnover rate of the enzyme 5-fold, whereas the C lobe plays a dual role; it is required for full activity, but in addition, via Ca2+ binding site 3, it stabilizes ATP binding to αCaMKII 4-fold. Thr286 autophosphorylation is also dependent on Ca2+ binding sites on both the N and the C lobes of CaM. As the CaM C lobe sites are populated by low amplitude/low frequency (global) Ca2+ signals, but occupancy of N lobe site 1 and thus activation of αCaMKII requires high amplitude/high frequency (local) Ca2+ signals, lobe-specific sensing of Ca2+-signaling patterns by CaM is proposed to explain the requirement for both global and local Ca2+ signaling in the induction of LTP via αCaMKII.  相似文献   

6.
Moderate increases of intracellular Ca2+ concentration ([Ca2+]i), induced by either the activation of tropomyosin receptor kinase (Trk) receptors for neurotrophins or by neuronal activity, regulate different intracellular pathways and neuronal survival. In the present report we demonstrate that glial cell line-derived neurotrophic factor (GDNF) treatment also induces [Ca2+]i elevation by mobilizing this cation from internal stores. The effects of [Ca2+]i increase after membrane depolarization are mainly mediated by calmodulin (CaM). However, the way in which CaM exerts its effects after tyrosine kinase receptor activation remains poorly characterized. It has been reported that phosphatidylinositol 3-kinase (PI 3-kinase) and its downstream target protein kinase B (PKB) play a central role in cell survival induced by neurotrophic factors; in fact, GDNF promotes neuronal survival through the activation of the PI 3-kinase/PKB pathway. We show that CaM antagonists inhibit PI 3-kinase and PKB activation as well as motoneuron survival induced by GDNF. We also demonstrate that endogenous Ca2+/CaM associates with the 85-kDa regulatory subunit of PI 3-kinase (p85). We conclude that changes of [Ca2+]i, induced by GDNF, promote neuronal survival through a mechanism that involves a direct regulation of PI 3-kinase activation by CaM thus suggesting a central role for Ca2+ and CaM in the signaling cascade for neuronal survival mediated by neurotrophic factors.  相似文献   

7.
Inositol 1,4,5-trisphosphate (Ins P3) 3-kinase catalyzes the ATP-dependent phosphorylation of Ins P3 to Inositol 1,3,4,5-tetrakisphosphate (Ins P4). Ca2+/calmodulin (CaM)-sensitivity of Ins P3 3-kinase was measured in the crude soluble fraction from rat brain and different anatomic regions of bovine brain. Kinase activity was inhibited in the presence of EGTA (free Ca2+ below 1 nM) as compared to Ca2+ (10 microM free Ca2+) or Ca2+ (10 microM free Ca2+) and CaM (1 microM). Ca2+-sensitivity was also seen for the cAMP phosphodiesterase measured under the same assay conditions, but was not for the Ins P3 5-phosphatase. DEAE-cellulose chromatography of the soluble fraction of rat brain or bovine cerebellum resolved a Ca2+/CaM-sensitive Ins P3 3-kinase (maximal stimulation at 1 microM Ins P3 substrate level was 2.0-3.0 fold).  相似文献   

8.
9.
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and (45)Ca(2+) flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP(3)-induced Ca(2+) release (IICR). In addition, we found a Ca(2+)-independent interaction between CaBP1 and the NH(2)-terminal 159 amino acids of the type 1 InsP(3)R. This interaction resulted in decreased InsP(3) binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP(3)Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP(3)Rs tuning the sensitivity of cells to InsP(3).  相似文献   

10.
Glycine (Gly) is considered an obligatory co-agonist at NMDA receptors. Müller glia from the retina harbor functional NMDA receptors, as well as low and high affinity Gly transporters, the later identified as GLYT1. We here studied the regulation of Gly transport in primary cultures of Müller glia, as this process could contribute to the modulation of NMDA receptor activity at glutamatergic synapses in the retina. We demonstrate that neither glutamate stimulation nor the activation or inhibition of protein kinases A or C modify transport. In order to assess a function for Ca2+ and calmodulin (CaM)-dependent processes in the regulation of Gly transport, we explored the participation of Ca2+ concentration, CaM and Ca2+/CaM-dependent enzymes on Gly transporter activity. ATP and carbachol, known to induce Ca2+ waves in Müller cells, as well as caffeine-induced Ca2+ release from intracellular stores stimulated transport, whereas Ca2+ chelation by BAPTA-AM markedly reduced transport. CaM inhibitors W-7, ophiobolin A, R-24571 and trifluoperazine, induced a specific dose-dependent inhibition of transport. The inhibition of CaMKII by the autocamtide-2-related inhibitory peptide or by KN62 caused a decrease in transport which, in the case of KN62, was due to the abolition of the high affinity component, ascribed to GLYT1. Our results further suggest that Gly transport is under cytoskeletal control, as activation of calpain by major increases in [Ca2+]i induced by ionophores, as well as actin destabilization clearly inhibit uptake. We here demonstrate for the first time the participation of CaM, CaMKII and the actin cytoskeleton in the regulation of Gly transport in glia. Ca2+ waves are induced in Müller cells by distinct neuroactive compounds released by neurons and glia, hence the regulation of [Gly] by this system may be of physiological relevance in the control of retinal excitability.  相似文献   

11.
The ubiquitous calcium-binding protein calmodulin (CaM) has been implicated in the development and function of the nervous system in a variety of eukaryotic organisms. We have generated mutations in the single Drosophila Calmodulin (Cam) gene and examined the effects of these mutations on behavior, synaptic transmission at the larval neuromuscular junction, and structure of the larval motor nerve terminal. Flies hemizygous for Cam3c1, a mutation in the first Ca2+-binding site, exhibit behavioral, neurophysiological, and neuroanatomical abnormalities. In particular, adults exhibit defects in locomotion, coordination, and flight. Larvae exhibit increased neurotransmitter release from the motor nerve terminal at low [Ca2+] in the presence of the K+ channel-blocking drug quinidine. In addition, synaptic bouton structure at motor nerve terminals is altered. These effects are distinct from those produced by altering the activity of the CaM target enzymes CaM-activated kinase II (CaMKII) and CaM-activated adenylyl cyclase (CaMAC). Furthermore, previous in vitro studies of mutant Cam3c1 demonstrated that although its Ca2+ affinity is decreased, Cam3c1 protein can activate CaMKII, CaMAC, and CaM-activated phosphatase calcineurin in a manner similar to wild-type CaM. Thus, the Cam3c1 mutation might affect Ca2+ buffering or interfere with the activation or inhibition of a CaM target distinct from CaMKII or CaMAC.  相似文献   

12.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

13.
Calmodulin (CaM) mediates Ca-dependent regulation of numerous pathways in the heart, including CaM-dependent kinase (CaMKII) and calcineurin (CaN), yet the local Ca2+ signals responsible for their selective activation are unclear. To assess when and where CaM, CaMKII, and CaN may be activated in the cardiac myocyte, we integrated new mechanistic computational models of CaM, CaMKII, and CaN with the Shannon-Bers model of excitation-contraction coupling in the rabbit ventricular myocyte. These models are validated with independent in vitro data. In the intact myocyte, model simulations predict that CaM is highly activated in the dyadic cleft during each beat, but not appreciably in the cytosol. CaMKII-δC was almost insensitive to cytosolic Ca due to relatively low CaM affinity. Dyadic cleft CaMKII exhibits dynamic frequency-dependent responses to Ca, yet autophosphorylates only when local phosphatases are suppressed. In contrast, dyadic cleft CaN in beating myocytes is predicted to be constitutively active, whereas the extremely high affinity of CaN for CaM allows gradual integration of small cytosolic CaM signals. Reversing CaM affinities for CaMKII and CaN also reverses their characteristic local responses. Deactivation of both CaMKII and CaN seems dominated by Ca dissociation from the complex (versus Ca-CaM dissociation from the target). In summary, the different affinities of CaM for CaMKII and CaN determine their sensitivity to local Ca signals in cardiac myocytes.  相似文献   

14.
The InsP3R Ca2+ release channel has a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). InsP3 activates gating primarily by reducing the sensitivity of the channel to inhibition by high [Ca2+]i. To determine if relieving Ca2+ inhibition is sufficient for channel activation, we examined single-channel activities in low [Ca2+]i in the absence of InsP3, by patch clamping isolated Xenopus oocyte nuclei. For both endogenous Xenopus type 1 and recombinant rat type 3 InsP3R channels, spontaneous InsP3-independent channel activities with low open probability Po ( approximately 0.03) were observed in [Ca2+]i < 5 nM with the same frequency as in the presence of InsP3, whereas no activities were observed in 25 nM Ca2+. These results establish the half-maximal inhibitory [Ca2+]i of the channel to be 1.2-4.0 nM in the absence of InsP3, and demonstrate that the channel can be active when all of its ligand-binding sites (including InsP3) are unoccupied. In the simplest allosteric model that fits all observations in nuclear patch-clamp studies of [Ca2+]i and InsP3 regulation of steady-state channel gating behavior of types 1 and 3 InsP3R isoforms, including spontaneous InsP3-independent channel activities, the tetrameric channel can adopt six different conformations, the equilibria among which are controlled by two inhibitory and one activating Ca2+-binding and one InsP3-binding sites in a manner outlined in the Monod-Wyman-Changeux model. InsP3 binding activates gating by affecting the Ca2+ affinities of the high-affinity inhibitory sites in different conformations, transforming it into an activating site. Ca2+ inhibition of InsP3-liganded channels is mediated by an InsP3-independent low-affinity inhibitory site. The model also suggests that besides the ligand-regulated gating mechanism, the channel has a ligand-independent gating mechanism responsible for maximum channel Po being less than unity. The validity of this model was established by its successful quantitative prediction of channel behavior after it had been exposed to ultra-low bath [Ca2+].  相似文献   

15.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of neuronal excitability in many systems. Recent studies suggest that local regulation of membrane potential can have important computational consequences for neuronal function. In Drosophila, CaMKII regulates the eag potassium channel, but if and how this regulation was spatially restricted was unknown. Using coimmunoprecipitation from head extracts and in vitro binding assays, we show that CaMKII and Eag form a stable complex and that association with Eag activates CaMKII independently of CaM and autophosphorylation. Ca(2+)/CaM is necessary to initiate binding of CaMKII to Eag but not to sustain association because binding persists when CaM is removed. The Eag CaMKII-binding domain has homology to the CaMKII autoregulatory region, and the constitutively active CaMKII mutant, T287D, binds Eag Ca(2+)-independently in vitro and in vivo. These results favor a model in which the CaMKII-binding domain of Eag displaces the CaMKII autoinhibitory region. Displacement results in autophosphorylation-independent activation of CaMKII which persists even when Ca(2+) levels have gone down. Activity-dependent binding to this potassium channel substrate allows CaMKII to remain locally active even when Ca(2+) levels have dropped, providing a novel mechanism by which CaMKII can regulate excitability locally over long time scales.  相似文献   

16.
Ca2+ efficiently inhibits binding of inositol 1,4,5-trisphosphate (InsP3) to the InsP3 receptor in cerebellar membranes but not to the purified receptor. We have now investigated the mechanism of action by which Ca2+ inhibits InsP3 binding. Our results suggest that Ca2+ does not cause the stable association of a Ca(2+)-binding protein with the receptor. Instead, Ca2+ leads to the production of a soluble, heat-stable, low molecular weight substance from cerebellar membranes that competes with InsP3 for binding. This inhibitory substance probably represents endogenously generated InsP3 as judged by the fact that it co-purifies with InsP3 on anion-exchange chromatography, competes with [3H]InsP3 binding in a pattern similar to unlabeled InsP3, and is in itself capable of releasing 45Ca2+ from permeabilized cells. A potent Ca(2+)-activated phospholipase C activity producing InsP3 was found in cerebellar microsomes that exhibited a Ca2+ dependence identical to the Ca(2+)-dependent inhibition of InsP3 binding. Together these results suggest that the Ca(2+)-dependent inhibition of InsP3 binding to the cerebellar receptor is due to activation of a Ca(2+)-sensitive phospholipase C enriched in cerebellum. Nevertheless, Ca2+ probably also modulates the InsP3 receptor function by a direct interaction with the receptor that does not affect InsP3 binding but regulates InsP3-dependent channel gating.  相似文献   

17.
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers.  相似文献   

18.
Ca2+-dependent facilitation (CDF) of voltage-gated calcium current is a powerful mechanism for up-regulation of Ca2+ influx during repeated membrane depolarization. CDF of L-type Ca2+ channels (Ca(v)1.2) contributes to the positive force-frequency effect in the heart and is believed to involve the activation of Ca2+/calmodulin-dependent kinase II (CaMKII). How CaMKII is activated and what its substrates are have not yet been determined. We show that the pore-forming subunit alpha(1C) (Ca(v)alpha1.2) is a CaMKII substrate and that CaMKII interaction with the COOH terminus of alpha1C is essential for CDF of L-type channels. Ca2+ influx triggers distinct features of CaMKII targeting and activity. After Ca2+-induced targeting to alpha1C, CaMKII becomes tightly tethered to the channel, even after calcium returns to normal levels. In contrast, activity of the tethered CaMKII remains fully Ca2+/CaM dependent, explaining its ability to operate as a calcium spike frequency detector. These findings clarify the molecular basis of CDF and demonstrate a novel enzymatic mechanism by which ion channel gating can be modulated by activity.  相似文献   

19.
Mycobacterium tuberculosis successfully parasitizes macrophages by disrupting the maturation of its phagosome, creating an intracellular compartment with endosomal rather than lysosomal characteristics. We have recently demonstrated that live M. tuberculosis infect human macrophages in the absence of an increase in cytosolic Ca(2+) ([Ca(2+)](c)), which correlates with inhibition of phagosome-lysosome fusion and intracellular viability. In contrast, killed M. tuberculosis induces an elevation in [Ca(2+)](c) that is coupled to phagosome-lysosome fusion. We tested the hypothesis that defective activation of the Ca(2+)-dependent effector proteins calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) contributes to the intracellular pathogenesis of tuberculosis. Phagosomes containing live M. tuberculosis exhibited decreased levels of CaM and the activated form of CaMKII compared with phagosomes encompassing killed tubercle bacilli. Furthermore, ionophore-induced elevations in [Ca(2+)](c) resulted in recruitment of CaM and activation of CaMKII on phagosomes containing live M. tuberculosis. Specific inhibitors of CaM or CaMKII blocked Ca(2+) ionophore-induced phagosomal maturation and enhanced the bacilli's intracellular viability. These results demonstrate a novel role for CaM and CaMKII in the regulation of phagosome-lysosome fusion and suggest that defective activation of these Ca(2+)-activated signaling components contributes to the successful parasitism of human macrophages by M. tuberculosis.  相似文献   

20.
The inositol 1,4,5-trisphosphate receptor (InsP3R) family of Ca2+ release channels is central to intracellular Ca2+ signaling in mammalian cells. The InsP3R channels release Ca2+ from intracellular compartments to generate localized Ca2+ transients that govern a myriad of cellular signaling phenomena (Berridge, 1993. Nature. 361:315-325; Joseph, 1996. Cell Signal. 8:1-7; Kume et al., 1997. Science. 278:1940-1943; Berridge, 1997. Nature. 368:759-760). express multiple InsP3R isoforms, but only the function of the single type 1 InsP3R channel is known. Here the single-channel function of single type 2 InsP3R channel is defined for the first time. The type 2 InsP3R forms channels with permeation properties similar to that of the type 1 receptor. The InsP3 regulation and Ca2+ regulation of type 1 and type 2 InsP3R channels are strikingly different. Both InsP3 and Ca2+ are more effective at activating single type 2 InsP3R, indicating that single type 2 channels mobilize substantially more Ca2+ than single type 1 channels in cells. Furthermore, high cytoplasmic Ca2+ concentrations inactivate type 1, but not type 2, InsP3R channels. This indicates that type 2 InsP3R channel is different from the type 1 channel in that its activity will not be inherently self-limiting, because Ca2+ passing through an active type 2 channel cannot feed back and turn the channel off. Thus the InsP3R identity will help define the spatial and temporal nature of local Ca2+ signaling events and may contribute to the segregation of parallel InsP3 signaling cascades in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号