首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using direct R-banding fluorescence in situ hybridization, we determined the location of 31 functional genes on chicken chromosomes. Replication R-banded chromosomes were obtained by synchronizing splenocyte cultures with excessive thymidine, followed by BrdU treatment. Thirty-one functional genes were directly localized to banded chicken chromosomes using genomic DNA and cDNA fragments as probes. The possibility of conserved linkage homology between chicken and human chromosomes was demonstrated for seven chicken chromosome regions (1p, 1q, 2q, 4p, 4q, and 5q).  相似文献   

2.
3.
4.
5.
To localize chicken genes and microsatellites, we used heterologous two-color FISH and chicken chromosome specific BAC clones. All BAC clones were verified by PCR. An analysis of the results has shown that maf gene forms one linkage group with the mc1r gene (CJA11), aldh1a1 forms one linkage group with the igvps gene (CJA15), pno forms one linkage group with the acaca gene (CJA19), fzf forms one linkage group with the bmp7 gene (CJA20), and cw01 forms one linkage group with the ubap2w gene (CJAW). Microsatellite ADL0254 was localized jointly with the insr gene (CJA28), and LEI0342 and MCW0330 microsatellites were localized jointly with the hspa5 gene (CJA17). If we consider that the nomenclature of quail chromosomes is the same as in chickens, their localization will correspond to the following chromosomes: CJA11 (maf), 15 (aldh1a1), 19 (pno), 20 (fzf), and W (cw01). The microsatellite ADL0254 turned out to be located on the same microchromosome as the insr gene (CJA 28), while microsatellites LEI0342 and MCW0330 were found to be in the same linkage group with the hspa5 gene (CJA17). The same work was also carried out on the chicken genome. Different results were obtained. The localization of the BAC clones containing the cw01 and fzf genes and the MCW0330 microsatellite was confirmed completely; they are located on GGAW, 20, and 17 chromosomes, respectively. Microsatellites ADL0254 and LEI0342 were each revealed to have two sites, whereas the localization of the remaining genes (maf, aldh1a1, and pno) on the GGA11, GGA15, and GGA19 chromosomes turned out to be untrue and needs further study.  相似文献   

6.
Chromosome locations of the eight SOX family genes, SOX1, SOX2, SOX3, SOX5, SOX9, SOX10, SOX14 and SOX21, were determined in the chicken by fluorescence in situ hybridization. The SOX1 and SOX21 genes were localized to chicken chromosome 1q3.1-->q3.2, SOX5 to chromosome 1p1.6-->p1.4, SOX10 to chromosome 1p1.6, and SOX3 to chromosome 4p1.2-->p1.1. The SOX2 and SOX14 genes were shown to be linked to chromosome 9 using two-colored FISH and chromosome painting, and the SOX9 gene was assigned to a pair of microchromosomes. These results suggest that these SOX genes form at least three clusters on chicken chromosomes. The seven SOX genes, SOX1, SOX2, SOX3, SOX5, SOX10, SOX14 and SOX21 were localized to chromosome segments with homologies to human chromosomes, indicating that the chromosome locations of SOX family genes are highly conserved between chicken and human.  相似文献   

7.
Cross-species chromosome painting analyses have recently demonstrated the presence of regions of conserved synteny between the human and domestic dog genomes, aiding the search for candidate genes for inherited traits. Concerted efforts to subchromosomally assign substantial numbers of dog gene sequences are now needed in order to refine these comparative data, both in terms of marker density and resolution. We have developed novel PCR markers representing three dog genes (ALB, FOS, HNRPA2B1) for which no sequence or mapping data were previously available, to our knowledge. These, in addition to three gene markers previously described (ALDOA, RPE65, VCAM1), were used to isolate and chromosomally assign corresponding large insert genomic clones by fluorescence in situ hybridization (FISH). Chromosome assignments for these six dog genes are discussed in terms of those of the human orthologues, and correlated with existing comparative mapping information, identifying one apparent exception to existing Zoo-FISH data, and aiding refinement of the boundaries of conserved chromosome segments in both genomes.  相似文献   

8.
The analysis of inherited diseases in the domestic dog (Canis familiaris) provides a resource for the continued use of this species as a model system for human diseases. Many different dog breeds are affected by congenital sensorineural deafness. Since mutations in various genes have already been found causative for sensorineural hearing impairment in humans or mice, 20 of these genes were considered as candidates for deafness in dogs. For each of the candidate genes a canine BAC clone was isolated by screening with heterologous human or murine cDNA probes. The gene-containing BAC clones were physically assigned to the canine genome by FISH and the BAC-derived STS-markers were positioned with the RHDF5000 panel on the canine RH map. The mapping data, which confirm the established conservation of synteny between canine and human chromosomes, provide a resource for further association studies in segregating canine populations and the basis for new insights into this common canine and human disease.  相似文献   

9.
Ovotransferrin, an egg-white protein implicated in the transfer of trace elements from the hen oviduct to the developing avian embryo, and cytosolic adenylate kinase, an essential enzyme involved in the interconversion of adenine nucleotides in energetically active tissues, have been mapped to two separate chicken microchromosomes by fluorescent in situ hybridization. Considering present and previous data, the possibility of loss of intron material resulting in the compactation of genes in chicken microchromosomes is briefly discussed.  相似文献   

10.
11.
12.
We describe the complete sequence, genomic organization, and FISH chromosome mapping of the human VAMP2. We identified a 7-kb clone, pISSHG2b3A, containing the entire structure of VAMP2. Previous studies performed by others identified a 5-kb clone, pVPC5-2, containing the incomplete VAMP2. The pVPC5-2 clone was partially sequenced and mapped to the broad region 17pter-->p12 by somatic cell hybridization. Our clone overlaps the pVPC5-2 clone and extends approximately 2 kb at the 3' end. In this study, we mapped this gene more precisely on 17p12 by FISH and we found a new polymorphic microsatellite, (GT)(7)CC(GT)(5), in exon V. This microsatellite, revealing three alleles with frequencies of 0.778, 0.139, and 0.083, might be useful for future linkage studies. Finally, we localized three previously known markers, stSG12859, TIGR-A002F11, and WIAF-1699 (alias stSG4044), in the 3' untranslated region of the gene.  相似文献   

13.
14.
The gene for tyrosine hydroxylase, the first and rate-limiting enzyme in the biosynthetic pathway of catecholamine neurotransmitters, has been localized in situ to chromosome 6 in the chicken. It is the first DNA marker to be reported for this telocentric macrochromosome. Use of a 45-kb biotinylated chicken-specific cosmid probe and a sensitive fluorescent detection system proved to be highly efficient, with over 90% of metaphases showing positive hybridization signals on one or (usually) both chromosome 6 homologs, in physically mapping this single-gene locus.  相似文献   

15.

Background

Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.

Results

The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.

Conclusion

The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10) and 4th residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.  相似文献   

16.
17.
In metaphases from female mouse fibroblasts, successive stainings by Giemsa and DAPI and immunolabeling of 5-methylcytosine were performed with or without bromodeoxyuridine pretreatment. It was shown that, compared to all other chromosomes, the late replicating X is the least methylated, the most compacted, and the most intensely stained by DAPI and Giemsa.  相似文献   

18.
A novel insertion 78,ZZ or 78,ZW, ins(3;1)(q25q27;undetermined) was revealed in chicken by double color fluorescent in situ hybridization (FISH). A fragment of chromosome 1 spanning either from q13-14 to q34-35, or from q14-21 to q36-41 bands, had been translocated to chromosome 3 at a site located between q25 to q27 bands. This has resulted in the generation of an interstitial deletion in chromosome 1 and an insertional translocation in chromosome 3. Chickens with this balanced insertional translocation are asymptomatic carriers and their fertility is not affected, but embryo mortality increases. Greater than 50% occurrence of unbalanced gametes are observed. However, progeny sex ratio is not affected.  相似文献   

19.
The role of carotenoid genes crtB and crtE has been functionally assigned. These genes were cloned from Erwinia into Escherichia coli or Agrobacterium tumefaciens. Their functions were elucidated by assaying early isoprenoid enzymes involved in phytoene formation. In vitro reactions from extracts of E. coli carrying the crtE gene or a complete carotenogenic gene cluster in which crtB was deleted showed an elevated conversion of farnesyl pyrophosphate (FPP) into geranylgeranyl pyrophosphate (GGPP). These results strongly indicate that the crtE gene encodes GGPP synthase. Introduction of the crtB gene into A. tumefaciens led to the conversion of GGPP into phytoene. This activity was absent in similar transformants with the crtE gene. Thus, the crtB gene probably encodes phytoene synthase, which was further supported by demonstration that phytoene accumulated in E. coli harboring both the crtB and crtE genes.  相似文献   

20.
Katokhin  A. V.  Efimov  V. M.  Badratinov  M. Sh.  Kamneva  O. K.  Mordvinov  V. A. 《Biophysics》2008,51(1):100-109

The results of two independent DNA-microarray experiments concerning adipogenesis in the murine preadipocyte 3T3-L1 cell line, which covered the first two days after the induction of differentiation, were analyzed using the multidimensional scaling (MDS) method. In both data arrays, the first three scaling components accounted for 73.5–73.8% of the total dispersion. This result implies that both arrays of the gene expression profiles are in fact three-dimensional and each component reflects a definite principal process involved in one of the three early stages of adipogenesis: (i) determination of the fibroblast-like stem cells, (ii) clonal expansion of adipoblasts, and (iii) preadipocyte conversion into a mature adipocyte phenotype. Each profile of the gene expression is characterized by coefficients of correlation with the first three scaling components. The functional annotation in terms of the Gene Ontology database profiles (sorted according to the correlations with each component) generally corresponds to a regular change of elementary biological processes during the three early stages of adipogenesis. Analysis of correlations with the principal scaling components for the genes previously classified as subject to differential expression in the course of adipogenesis in mice suggests a complicated role of these genes in early adipogenesis (in some cases, described in the literature). The MDS analysis of the gene expression profiles and the analysis of correlations between these profiles and the main scaling components provides a deeper insight into the fine role of these genes and makes possible the search for new biomarkers of various differentiation stages.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号