首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alterations of inosinate branchpoint enzymes in cultured human lymphoblasts   总被引:2,自引:0,他引:2  
The specific activities of the three enzymes of the inosinate branchpoint are independently regulated when lymphoblasts are grown under various tissue culture conditions. In comparison to rapidly dividing cells, lymphoblasts at high cell density with no cellular division have decreased activity of the enzymes which commit inosinate to adenylate or guanylate, while cytoplasmic 5'-nucleotidase is relatively preserved. A linear relationship between inosinate dehydrogenase activity and growth rate (r = 0.92) exists in lymphoblasts with slowed growth rates. In contrast, in dividing cells adenylosuccinate synthetase and 5'-nucleotidase do not vary with growth rate. Adenylosuccinate synthetase and inosinate dehydrogenase activities appear to be related to the presence or rate of cellular division, as opposed to the presence or degree of neoplastic transformation. Lymphoblast lines with alterations of specific purine metabolic enzymes have characteristic alteration of the inosinate utilizing enzymes. Deficiencies of purine nucleoside phosphorylase or hypoxanthine phosphoribosyltransferase, abnormalities which render the cell unable to salvage purine effectively, are associated with depressed inosinate dehydrogenase activity. Insertion of the hypoxanthine phosphoribosyltransferase gene into hypoxanthine phosphoribosyltransferase-deficient cells normalizes inosinate dehydrogenase activity, while a hypoxanthine phosphoribosyltransferase-deficient mutant selected from a hypoxanthine phosphoribosyltransferase-containing line has depressed inosinate dehydrogenase activity. In contrast, overactivity of phosphoribosylpyrophosphate synthetase, with enhanced excretion of purines due to excessive production, is associated with elevated inosinate dehydrogenase activity. Inosinate dehydrogenase appears to be regulated according to the availability of purine nucleotides. Patients who overproduce uric acid and potentially have undescribed purine metabolic defects are now being screened for abnormalities in the inosinate branchpoint enzymes.  相似文献   

2.
Procedures for assaying the rate of purine de novo synthesis in cultured fibroblast cells have been compared. These were (i) the incorporation of [(14)C]-glycine or [(14)C]formate in alpha-N-formylglycinamide ribonucleotide (an intermediate in the purine synthetic pathway) and (ii) the incorporation of [(14)C]-formate into newly synthesised cellular purines and purines excreted by the cell into the medium. Fibroblast cells, derived from patients with a deficiency of hypoxanthine phosphoribosyltransferase (HPRT-) (EC 2.4.2.8) and increased rates of purine de novo synthesis, were compared with fibroblasts from healthy subjects (HPRT+). Fetal calf serum, which was used to supplement the assay and cell growth medium, was found to contain sufficient quantities of the purine base hypoxanthine to inhibit purine de novo synthesis in HPRT+ cells. This inhibition was the basis of differentiation between HPRT- and HPRT+ cells. In the absence of added purine base, both cell types had similar capacities for purine de novo synthesis. This result contrasts with the increased rates of purine de novo synthesis reported for a number of human HPRT- cells in culture but conforms recent studies made on human HPRT- lymphoblast cells. The intracellular concentration and utilisation of 5-phosphoribosyl-1-pyrophosphate (P-Rib-PP), a substrate and potential controlling factor for purine de novo synthesis, were determined in HPRT- and HPRT+ cells. The rate of utilisation of P-Rib-PP in the salvage of free purine bases was far greater than that in purine de novo synthesis. Although HPRT- cells had a 3-fold increase in P-Rib-PP content, the rate of P-Rib-PP generation was similar to HPRT+ cells. Thus, in fibroblasts, the concentration of P-Rib-PP appears to be critical in the control of de novo purine synthesis and its preferential utilisation in the HPRT reaction limits its availability for purine de novo synthesis. In vivo, HPRT+ cells, in contrast to HPRT- cells, may be operating purine de novo synthesis at a reduced rate because of their ability to reutilise hypoxanthine.  相似文献   

3.
Phosphoribosyl pyrophosphate (PPRibP) synthetase activity was studied in cultured fibroblasts and lymphoblasts from a male child (patient 2-A) in whom inherited purine nucleotide and uric acid overproduction are accompanied by neurological deficits. Chromatographed or partially purified preparations of the child's enzyme showed 5-6-fold increased inhibitory constants (I0.5) for the noncompetitive inhibitors GDP and 6-methylthioinosine monophosphate but normal responsiveness to the competitive inhibitors ADP and 2,3-diphosphoglycerate. Activation of the PPRibP synthetase of patient 2-A by Pi was also abnormal with 3-4-fold reduced apparent KD values for Pi. Superactivity of the PPRibP synthetase of this child thus appeared to result from a combination of regulatory defects; selective resistance to noncompetitive inhibitors and increased responsiveness to Pi activation. Selective growth of the patient's fibroblasts in medium containing 6-methylthioinosine confirmed the functional significance of the in vitro inhibitor resistance of the aberrant enzyme. Fibroblasts and lymphoblasts derived from patient 2-A showed increased concentrations and rates of generation of PPRibP as well as increased rates of the pathways of purine base salvage and purine nucleotide synthesis de novo. The magnitudes of these increases in the child's cells exceeded those in cells with catalytically superactive PPRibP synthetases. These alterations as well as the in vitro kinetic abnormalities in the patient 2-A enzyme were expressed to a reduced degree in fibroblasts from the child's affected mother, supporting the proposal that this woman is a heterozygous carrier for X-linked enzyme superactivity.  相似文献   

4.
Mutations in the gene encoding the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease, a neurodevelopmental disorder characterized by cognitive, neurological, and behavioral abnormalities. Despite detailed knowledge of the enzyme's function, the key pathophysiological changes that accompany loss of purine recycling are unclear. To facilitate delineating the consequences of HPRT deficiency, four independent HPRT-deficient sublines of the human dopaminergic neuroblastoma, SK-N-BE(2) M17, were isolated by targeted mutagenesis with triple helix-forming oligonucleotides. As a group, these HPRT-deficient cells showed several significant abnormalities: (i) impaired purine recycling with accumulation of hypoxanthine, guanine, and xanthine, (ii) reduced guanylate energy charge and GTP:GDP ratio, but normal adenylate energy charge and no changes in any adenine nucleotide ratios, (iii) increased levels of UTP and NADP+, (iv) reduced DOPA decarboxylase, but normal monoamines, and (v) reduction in cell soma size. These cells combine the analytical power of multiple lines and a human, neuronal origin to provide an important tool to investigate the pathophysiology of HPRT deficiency.  相似文献   

5.
Lesch-Nyhan disease (LND) is a rare disorder caused by a defect of an enzyme in the purine salvage pathway, hypoxanthine phosphoribosyl transferase (HPRT). It is still unknown how the metabolic defect translates into the complex neuropsychiatric phenotype characterized by self-injurious behavior, dystonia and mental retardation. There are abnormalities in purine and pyrimidine nucleotide content in HPRT-deficient cells. We hypothesized that altered nucleotide concentrations in HPRT deficiency change G-protein-mediated signal transduction. Therefore, our original study aim was to examine the high-affinity GTPase activity of G-proteins in membranes from primary human skin and immortalized mouse skin fibroblasts, rat B103 neuroblastoma cells and mouse Neuro-2a neuroblastoma cells. Unexpectedly, in membranes from human fibroblasts, B103- and Neuro-2a cells, V(max) of low-affinity nucleoside 5'-triphosphatase (NTPase) activities was decreased up to 7-fold in HPRT deficiency. In contrast, in membranes from mouse fibroblasts, HPRT deficiency increased NTPase activity up to 4-fold. The various systems analyzed differed from each other in terms of K(m) values for NTPs, absolute V(max) values and K(i) values for nucleoside 5'-[beta,gamma-imido]triphosphates. Our data show that altered membrane NTPase activity is a biochemical hallmark of HPRT deficiency, but species and cell-type differences have to be considered. Thus, future studies on biochemical changes in LND should be conducted in parallel in several HPRT-deficient systems.  相似文献   

6.
Cellular resistance to the cytotoxic purine analogues 8-azaguanine (AG) and 6-thioguanine (TG) is usually mediated by a mutation leading to the loss or reduction in hypoxanthine phosphoribosyltransferase (HPRT) activity. However, stable AG-resistant variants have often been shown to contain wild-type levels of HPRT, while cellular resistance to TG is always accompanied by a profound deficiency in HPRT activity. Such AG-resistant, HPRT-positive cells are still sensitive to TG. To investigate the basis of this differential sensitivity, we examined the inhibition of the HPRT activity by AG and TG in whole cells, in cell-free extracts, and with purified mouse HPRT. In addition, the relative incorporation and utilization of AG and TG by L929 cells were determined under a variety of culture conditions. Results show that, compared to TG, AG is generally a very poor substrate for HPRT. Incorporation of radioactive AG by HPRT-positive cells was extremely sensitive to the free purine concentrations in the medium, so that under the usual culture conditions employing undialyzed serum, cellular uptake and utilization was minimal even when relatively high levels of AG were present. In contrast, the incorporation of radioactive TG was comparable to that of a natural substrate, hypoxanthine. These results indicate that the differential cellular sensitivity to AG and TG is due to the difference between these two guanine analogues as substrates of HPRT. Additional data indicate also that cellular resistance to TG is mediated exclusively by HPRT deficiency, but resistance to very high levels of AG may result through at least two other mechanisms not involving HPRT deficiency. These observations may help resolve some of the conflicting data in the literature, and demonstrate that TG is a better selective agent for the HPRT-deficient phenotype.  相似文献   

7.
The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.  相似文献   

8.
Allopurinol is used widely for the treatment of purine disorders such as gout, but efficacy and safety of allopurinol has not been analyzed systematically in an extensive series of patients with HPRT deficiency. From 1984 to 2004 we have diagnosed 30 patients with HPRT deficiency. Eighteen patients (12 with Lesch-Nyhan syndrome or complete HPRT deficiency, and 6 with partial HPRT deficiency) were treated with allopurinol (mean dose, 6.44 mg/Kg of weight per day) and followed-up for at least 12 months (mean follow-up 7,6 years per patient). Mean age at diagnosis was 7 years (range, 5 months to 35 years). Treatment with allopurinol was associated to a mean reduction of serum urate concentration of 50%, and was normalized in all patients. Mean urinary uric acid excretion was reduced by 75% from baseline values, and uric acid to creatinine ratio was close or under 1.0 in all patients. In contrast, hypoxanthine and xanthine urinary excretion rates increased by a mean of 6 and 10 times, respectively, compared to baseline levels. These modifications were similar in patients with complete or partial HPRT deficiency. In 2 patients xanthine stones were documented despite allopurinol dose adjustments to prevent markedly increased oxypurine excretion rates. Neurological manifestations did not appear to be influenced by allopurinol therapy. Allopurinol is a very efficacy and fairly safety drug for the treatment of uric acid overproduction in patients with complete and partial HPRT deficiency. Allopurinol was associated with xanthine lithiasis.  相似文献   

9.
Allopurinol is used widely for the treatment of purine disorders such as gout, but efficacy and safety of allopurinol has not been analyzed systematically in an extensive series of patients with HPRT deficiency. From 1984 to 2004 we have diagnosed 30 patients with HPRT deficiency. Eighteen patients (12 with Lesch-Nyhan syndrome or complete HPRT deficiency, and 6 with partial HPRT deficiency) were treated with allopurinol (mean dose, 6.44 mg/Kg of weight per day) and followed-up for at least 12 months (mean follow-up 7,6 years per patient). Mean age at diagnosis was 7 years (range, 5 months to 35 years). Treatment with allopurinol was associated to a mean reduction of serum urate concentration of 50%, and was normalized in all patients. Mean urinary uric acid excretion was reduced by 75% from baseline values, and uric acid to creatinine ratio was close or under 1.0 in all patients. In contrast, hypoxanthine and xanthine urinary excretion rates increased by a mean of 6 and 10 times, respectively, compared to baseline levels. These modifications were similar in patients with complete or partial HPRT deficiency. In 2 patients xanthine stones were documented despite allopurinol dose adjustments to prevent markedly increased oxypurine excretion rates. Neurological manifestations did not appear to be influenced by allopurinol therapy. Allopurinol is a very efficacy and fairly safety drug for the treatment of uric acid overproduction in patients with complete and partial HPRT deficiency. Allopurinol was associated with xanthine lithiasis.  相似文献   

10.
Purine nucleoside phosphorylase (PNP) is an intracellular enzyme crucial for purine degradation. PNP defects result in metabolic abnormalities and fatal T cell immunodeficiency. Protein transduction domains (PTD) transfer molecules across biological membranes. We hypothesized that fusion of PTD to PNP (PTD-PNP) would be an effective method for treating PNP deficiency. We find that PTD-PNP rapidly enters PNP-deficient lymphocytes and increases intracellular enzyme activity for 96 h. Similar to endogenous PNP, PTD-PNP is predominantly distributed in the cytoplasm. PTD-PNP improve viability and correct abnormal functions of PNP-deficient T lymphocytes including their response to stimulation and IL-2 secretion. Intracellular transduction protects PTD-PNP from antibody neutralization and from elimination, which may also provide significant in vivo therapeutic advantages to PNP. In conclusion, PTD fusion is an attractive method for extended PNP intracellular enzyme replacement therapy for PNP-deficient patients as well as for the intracellular delivery of other proteins.  相似文献   

11.
The synthesis, interconversion, and catabolism of purine bases, ribonucleosides, and ribonucleotides in wild-type Saccharomyces cerevisiae were studied by measuring the conversion of radioactive adenine, hypoxanthine, guanine, and glycine into acid-soluble purine bases, ribonucleosides, and ribonucleotides, and into nucleic acid adenine and guanine. The pathway(s) by which adenine is converted to inosinate is (are) uncertain. Guanine is extensively deaminated to xanthine. In addition, some guanine is converted to inosinate and adenine nucleotides. Inosinate formed either from hypoxanthine or de novo is readily converted to adenine and guanine nucleotides.  相似文献   

12.
A 40-year-old normouricemic (5.5 mg/dl) male showed 46% hemolysate and 37% lymphoblast hypoxanthine phosphoribosyltransferase (HPRT) activities but was otherwise completely free of symptoms. His genomic DNA and cDNA had a missense base substitution (CAT-to-CGT in codon 60) leading to the amino-acid substitution His-to-Arg. Western blot analysis revealed that the amount of HPRT protein in lymphoblasts from this individual was 25%–50% of normal cells, suggesting that the decrease in the amount of enzyme protein was responsible for the partial deficiency. This provides the first clear evidence that a genomic missense mutation at the HPRT locus leads to a decrease in the amount of the enzyme protein but that otherwise it has no evident adverse effects in the hemizygote (asymptomatic mutation). Received: 15 May 1996 / Revised: 22 August 1996  相似文献   

13.
Malaria continues to devastate sub-Saharan Africa owing to the emergence of drug resistance to established antimalarials and to the lack of an efficacious vaccine. Plasmodium species have a unique streamlined purine pathway in which the dual specificity enzyme purine nucleoside phosphorylase (PNP) functions in both purine recycling and purine salvage. To evaluate the importance of PNP in an in vivo model of malaria, we disrupted PyPNP, the gene encoding PNP in the lethal Plasmodium yoelii YM strain. P. yoelii parasites lacking PNP were attenuated and cleared in mice. Although able to form gametocytes, PNP-deficient parasites did not form oocysts in mosquito midguts and were not transmitted from mosquitoes to mice. Mice given PNP-deficient parasites were immune to subsequent challenge to a lethal inoculum of P. yoelii YM and to challenge from P. yoelii 17XNL, another strain. These in vivo studies with PNP-deficient parasites support purine salvage as a target for antimalarials. They also suggest a strategy for the development of attenuated nontransmissible metabolic mutants as blood-stage malaria vaccine strains.  相似文献   

14.
The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) cause the severe neurodevelopmental Lesch Nyhan Disease (LND) are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA) and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS) cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA) multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer''s and Huntington''s disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.  相似文献   

15.
The overall activity of the purine de novo synthesis pathway and the activities of purine phosphoribosyltransferase in the rat testis were measured at different ages and were correlated with histological observations. Similar studies of the concentration of circulating gonadotrophins and testosterone were performed. The purine phosphoribosyltransferase activities were between two and three orders of magnitude greater than purine de novo synthesis. The peak activity of the purine de novo synthesis pathway coincided with the first appearance of meiosis in the spermatocytes immediately before the luteinising hormone (LH) level rose to its peak. The highest activity of the hypoxanthine phosphoribosyltransferase (HPRT; EC 2.4.2.8) - catalysed purine salvage pathway coincided with the first appearance of mature spermatozoa in the tubules just after the occurrence of peak levels of follicle-stimulating hormone (FSH). These findings are linked to the development of testicular atrophy in cases of severe HPRT deficiency in man.  相似文献   

16.
Human B lymphoblast lines severely deficient in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) were selected for resistance to 6-thioguanine from cloned normal and phosphoribosylpyrophosphate (PP-Rib-P) synthetase-superactive cell lines and were compared with their respective parental cell lines with regard to growth and PP-Rib-P and purine nucleotide metabolism. During blockade of purine synthesis de novo with 6-methylthioinosine or aminopterin, inhibition of growth of all HGPRT-deficient cell lines was refractory to addition of Ade at concentrations which restored substantial growth to parental cell lines. Ade-resistant inhibition of growth of parental lines by 6-methylthioinosine, however, occurred during Ado deaminase inhibition. Insufficient generation of IMP (and ultimately guanylates) to support growth of lymphoblasts lacking HGPRT activity and blocked in purine synthesis de novo best explained these findings, implying that a major route of interconversion of AMP to IMP involves the reaction sequence: AMP----Ado----Ino----Hyp----IMP. PP-Rib-P generation and purine nucleoside triphosphate pools were unchanged by introduction of HGPRT deficiency into normal lymphoblast lines, in agreement with the view that accelerated purine synthesis de novo in this deficiency results from increased availability of PP-Rib-P for the pathway. Cell lines with dual enzyme defects did not differ from PP-Rib-P synthetase-superactive parental lines in rates of PP-Rib-P and purine synthesis despite 5-6-fold increases in PP-Rib-P concentrations, excretion of nearly 50% of newly synthesized purines, and diminished GTP concentrations. Fixed rates of purine synthesis de novo in PP-Rib-P synthetase-superactive cells appeared to reflect saturation of the rate-limiting amidophosphoribosyltransferase reaction for PP-Rib-P. In combination with accelerated purine excretion, increased channeling of newly formed purines into adenylates, and impaired conversion of AMP to IMP, fixed rates of purine synthesis de novo may condition cell lines with defects in HGPRT and PP-Rib-P synthetase to depletion of GTP with consequent growth retardation.  相似文献   

17.
Nucleotide metabolism was studied in erythrocytes of a mentally retarded child and family members. Partial hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency was found in the propositus and an asymptomatic maternal uncle. Studies in crude lysates demonstrated decreased apparent V(max) and slightly decreased apparent K(m) for hypoxanthine in both HPRT-deficient subjects. Genomic DNA analysis revealed a single nucleotide change with leucine-147 to phenylalanine substitution in both subjects; mother and grandmother were heterozygous carriers of the same defect. This new variant has been termed HPRT(Potenza). Increased erythrocyte concentration of NAD and rate of synthesis by intact erythrocytes were found in the patient; increased activities of nicotinic acid phosphoribosyltransferase (NAPRT) and NAD synthetase (NADs) were demonstrated in erythrocyte lysates, with normal apparent K(m) for their substrates and increased V(max). These alterations were not found in any member of the family, including the HPRT-deficient uncle. These findings show multiple derangement of nucleotide metabolism associated with partial HPRT deficiency. The enzyme alteration was presumably not the cause of neurological impairment since no neurological symptoms were found in the HPRT-deficient uncle, whereas they were present in the propositus' elder brother who had normal HPRT activity.  相似文献   

18.
Defect of the purine salvage enzyme, hypoxanthine phosphoribosyl transferase (HPRT), results in Lesch-Nyhan disease (LND). It is unknown how the metabolic defect translates into the severe neuropsychiatric phenotype characterized by self-injurious behavior, dystonia and mental retardation. There are abnormalities in GTP, UTP and CTP concentrations in HPRT-deficient cells. Moreover, GTP, ITP, XTP, UTP and CTP differentially support Gs-protein-mediated adenylyl cyclase (AC) activation. Based on these findings we hypothesized that abnormal AC regulation may constitute the missing link between HPRT deficiency and the neuropsychiatric symptoms in LND. To test this hypothesis, we studied AC activity in membranes from primary human skin and immortalized mouse skin fibroblasts, mouse Neuro-2a neuroblastoma cells and rat B103 neuroblastoma cells. In B103 control membranes, GTP, ITP, XTP and UTP exhibited profound stimulatory effects on basal AC activity that approached the effects of hydrolysis-resistant nucleotide analogs. In HPRT- membranes, the stimulatory effects of GTP, ITP, XTP and UTP were strongly reduced. Similarly, in human and mouse skin fibroblast membranes we also observed a decrease in GTP-stimulated AC activity in HPRT-deficient cells compared with the respective controls. In mouse Neuro-2a neuroblastoma membranes, AC activity in the presence of GTP was below the detection limit of the assay. We discuss several possibilities to explain the abnormalities in AC regulation in HPRT deficiency that encompass various species and cell types.  相似文献   

19.
J Allsop  R W Watts 《Enzyme》1990,43(3):155-159
Extreme degrees of hypoxanthine phosphoribosyltransferase (HPRT) deficiency in man are associated with gross sex-linked neurological dysfunction, gout and urinary stones (the Lesch-Nyhan or 'complete HPRT-deficiency' syndrome). The less severe degrees of enzyme deficiency (sex-linked recessive gout and/or urolithiasis or the 'partial HPRT-deficiency' syndrome) may be associated with minor neurological manifestations. Whole body purine synthesis de novo is accelerated in both these groups of patients. A strain of mice with an experimentally produced mutation at the HPRT locus showed some residual 'apparent HPRT activity' in brain, liver, testicular, splenic, kidney and ovarian tissues but not in erythrocyte haemolysates. The mutation removes exons 1 and 2 of the coding region of the gene together with the promotor and about 10 kb of upstream sequence from the gene. It is therefore possible that the observed 'apparent HPRT activity' in these mice is due to the operation of an alternative metabolic pathway. Purine synthesis de novo was markedly accelerated in their brain, testicular, splenic and kidney tissues. It was not accelerated in the liver tissue of male mice hemizygous for the mutation and the degree of acceleration in the female homozygotes only just reached statistical significance at the p = 0.02 level. This observation casts doubt on the importance of modulations in the rate of hepatic purine synthesis de novo as a mechanism for maintaining a steady supply of purines for translocation to other organs.  相似文献   

20.
Under selected conditions the rate of glucose transport and the intracellular phosphoribosyl diphosphate (PPRibP) concentrations of chick-embryo fibroblasts are inversely correlated. This relationship holds when cells are incubated with mannose, fructose, xylose or various concentrations of glucose. The metabolic inhibitors 2,4-dinitrophenol, rotenone and Methylene Blue increased glucose transport and decreased PPRibP. The addition of any pyrimidine or purine base or ribonucleoside dramatically depleted PPRibP pools, regardless of the carbon source. Addition of guanine (10 microM) or hypoxanthine (100 microM) decreased transport in glucose-grown chick cells to barely detectable values, but did not affect increases observed in cells depressed by substitution of xylose for glucose. Guanosine, inosine and the purine analogues 6-thioguanine, 6-thioguanosine, 8-azaguanine and 6-methylmercaptopurine riboside sharply decreased transport in glucose-grown cells and blocked the increase in transport resulting from the replacement of glucose by fructose or xylose in the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号