首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   

2.
3.

Objective

Treadmill pre-training can ameliorate blood brain barrier (BBB) dysfunction in ischemia-reperfusion injury, however, its role in ischemic brain edema remains unclear. This study assessed the neuroprotective effects induced by treadmill pre-training, particularly on brain edema in transient middle cerebral artery occluded model.

Methods

Transient middle cerebral artery occlusion to induce stroke was performed on rats after 2 weeks of treadmill pre-training. Magnetic resonance imaging (MRI) was used to evaluate the dynamic impairment of cerebral edema after ischemia-reperfusion injury. In addition, measurements of wet and dry brain weight, Evans Blue assay and Garcia scores were performed to investigate the cerebral water content, BBB permeability and neurologic deficit, respectively. Moreover, during ischemia-reperfusion injury, the expression of Aquaporin 4 (AQP4) was detected using immunofluorescence and Western bloting analyses.

Results

Treadmill pre-training improved the relative apparent diffusion coefficient (rADC) loss in the ipsilateral cortex and striatum at 1 hour and 2.5 hours after cerebral ischemia. In the treadmill pre-training group, T2W1 values of the ipsilateral cortex and striatum increased less at 7.5 hours, 1 day, and 2 days after stroke while the brain water content decreased at 2 days after ischemia. Regarding the BBB permeability, the semi-quantitative amount of contrast agent leakage of treadmill pre-training group significantly decreased. Less Evans Blue exudation was also observed in treadmill pre-training group at 2 days after stroke. In addition, treadmill pre-training mitigated the Garcia score deficits at 2 days after stroke. Immunofluorescence staining and Western blotting results showed a significant decrease in the expression of AQP4 after treadmill ischemia following pre-training.

Conclusions

Treadmill pre-training may reduce cerebral edema and BBB dysfunction during cerebral ischemia/reperfusion injury via the down-regulation of AQP4.  相似文献   

4.
This study investigated the temporal expression and cell subtype distribution of activated caspase-3 following cortical impact-induced traumatic brain injury in rats. The animals were killed and examined for protein expression of the proteolytically active subunit of caspase-3, p18, at intervals from 6 h to 14 days after injury. In addition, we also investigated the effect of caspase-3 activation on proteolysis of the cytoskeletal protein alpha-spectrin. Increased protein levels of p18 and the caspase-3-specific 120-kDa breakdown product to alpha-spectrin were seen in the cortex ipsilateral to the injury site from 6 to 72 h after the trauma. Immunohistological examinations revealed increased expression of p18 in neurons, astrocytes, and oligodendrocytes from 6 to 72 h following impact injury. In contrast, no evidence of caspase-3 activation was seen in microglia at all time points investigated. Quantitative analysis of caspase-3-positive cells revealed that the number of caspase-3-positive neurons exceeded the number of caspase-3-positive glia cells from 6 to 72 h after injury. Moreover, concurrent assessment of nuclear histopathology using hematoxylin identified p18-immunopositive cells exhibiting apoptotic-like morphological profiles in the cortex ipsilateral to the injury site. In contrast, no evidence of increased p18 expression or alpha-spectrin proteolysis was seen in the ipsilateral hippocampus, contralateral cortex, or hippocampus up to 14 days after the impact. Our results are the first to demonstrate the concurrent expression of activated caspase-3 in different CNS cells after traumatic brain injury in the rat. Our findings also suggest a contributory role of activated caspase-3 in neuronal and glial apoptotic degeneration after experimental TBI in vivo.  相似文献   

5.
Abstract: Type 2 5'-deiodinase (5'-D2), which converts thyroxine to the more active thyroid hormone 3,5,3'-triiodothyronine (T3), is believed to be an important source of intracellular T3 in the brain. The activity of this enzyme is increased in hypothyroidism and decreased in hyperthyroidism, and as such, it serves an important role to protect the brain from wide fluctuations in T3 during changes in thyroidal state. Although it has been hypothesized that T3 may facilitate neuronal regeneration after CNS injury, the 5'-D2 response to brain injury is unknown. To assess the 5'-D2 mRNA response to injury, we performed in situ hybridization following traumatic brain injury. In unlesioned animals, 5'-D2 mRNA was undetectable. At 3 days posttrauma, 5'-D2 mRNA was detected in ipsilateral cortex near the contusion. A significant further increase of 5'-D2 mRNA was noted 7 days posttrauma in both hippocampus and cortex. Similar response was also observed on the contralateral side. Colocalization of 5'-D2 mRNA with glial fibrillary acidic protein indicates that reactive astrocytes were the major cellular source for the trauma-induced 5'-D2 expression. These data demonstrate, for the first time, a trauma-induced, astrocytic up-regulation of 5'-D2 mRNA, suggesting a potential role for T3 action in adult brain's response to injury and recovery.  相似文献   

6.
The present study examined the formation of regional cerebral edema in adult rats subjected to lateral (parasagittal) experimental fluid-percussion brain injury. Animals receiving fluid-percussion brain injury of moderate severity over the left parietal cortex were assayed for brain water content at 6 h, 24 h, and 2, 3, 5, and 7 days post injury. Regional sodium and potassium concentrations were measured in a separate group of animals at 10 min, 1 h, 6 h, and 24 h following fluid-percussion injury. Injured parietal cortex demonstrated significant edema, beginning at 6 h post injury (p less than 0.05) and persisting up to 5 days post injury. In the hippocampus ipsilateral to the site of cortical injury, significant edema occurred as early as 1 h post injury (p less than 0.05), with resolution of water accumulation beginning at 3 days. Sodium concentrations significantly increased in both injured cortex (1 h post injury, p less than 0.05) and injured hippocampus (10 min post injury, p less than 0.05). Potassium concentrations fell significantly 1 h post injury within the injured cortex (p less than 0.05), whereas significant decreases were not observed until 24 h post injury within the injured hippocampus. Cation alterations persisted throughout the 24-h post injury period. These results demonstrate that regional brain edema and cation deregulation occur in rats subjected to lateral fluid-percussion brain injury and that these changes may persist for a prolonged period after brain injury.  相似文献   

7.
Cystatin C (CysC) is a cysteine protease inhibitor and previous studies have demonstrated that increasing endogenous CysC expression has therapeutic implications on brain ischemia, Alzheimer’s disease, and other neurodegenerative disorders. Our previous reports have demonstrated that the autophagy pathway was activated in the brain after experimental subarachnoid hemorrhage (SAH), and it may play a beneficial role in early brain injury (EBI). This study investigated the effects of exogenous CysC on EBI, cognitive dysfunction, and the autophagy pathway following experimental SAH. All SAH animals were subjected to injections of 0.3 ml fresh arterial, nonheparinized blood into the prechiasmatic cistern in 20 s. As a result, treatment with CysC with low and medial concentrations significantly ameliorated the degree of EBI when compared with vehicle-treated SAH rats. Microtubule-associated protein light chain-3 (LC3), a biomarker of autophagosomes, and beclin-1, a Bcl-2-interacting protein required for autophagy, were significantly increased in the cortex 48 h after SAH and were further up-regulated after CysC therapy. By ultrastructural observation, there was a marked increase in autophagosomes and autolysosomes in neurons of CysC-treated rats. Learning deficits induced by SAH were markedly alleviated after CysC treatment with medial doses. In conclusion, pre-SAH CysC administration may attenuate EBI and neurobehavioral dysfunction in this SAH model, possibly through activating autophagy pathway.  相似文献   

8.
Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.  相似文献   

9.
Macroautophagy has been implicated in a variety of pathological processes. Hypoxic/ischemic cellular injury is one such process in which autophagy has emerged as an important regulator. In general, autophagy is induced after a hypoxic/ischemic insult; however, whether the induction of autophagy promotes cell death or recovery is controversial and appears to be context dependent. We have developed C. elegans as a genetically tractable model for the study of hypoxic cell injury. Both necrosis and apoptosis are mechanisms of cell death following hypoxia in C. elegans. However, the role of autophagy in hypoxic injury in C. elegans has not been examined. Here, we found that RNAi knockdown of the C. elegans homologs of beclin 1/Atg6 (bec-1) and LC3/Atg8 (lgg-1, lgg-2), and mutation of Atg1 (unc-51) decreased animal survival after a severe hypoxic insult. Acute inhibition of autophagy by the type III phosphatidylinositol 3-kinase inhibitors, 3-methyladenine and Wortmannin, also sensitized animals to hypoxic death. Hypoxia-induced neuronal and myocyte injury as well as necrotic cellular morphology were increased by RNAi knockdown of BEC-1. Hypoxia increased the expression of a marker of autophagosomes in a bec-1-dependent manner. Finally, we found that the hypoxia hypersensitive phenotype of bec-1(RNAi) animals could be blocked by loss-of-function mutations in either the apoptosis or necrosis pathway. These results argue that inhibition of autophagy sensitizes C. elegans and its cells to hypoxic injury and that this sensitization is blocked or circumvented when either of the two major cell-death mechanisms is inhibited.  相似文献   

10.
It has been reported that autophagy and zinc transporters (ZnTs) both play the key roles in excitotoxicity, which is associated with cognitive deficits following developmental seizures. However, the influence of autophagy on acute phase ZnTs expression has never been studied. The present study sought to investigate the contribution of an autophagy inhibitor (3-methyladenine, 3-MA) on the regulation of ZnTs, microtubule-associated protein 1A/1B light chain 3 (LC3), and beclin-1 expression in rat hippocampus following recurrent neonatal seizures. We examined the expression of ZnT1∼ZnT3, LC3, and beclin-1 at 1.5, 3, 6, and 24 h after the last seizures using real-time RT-PCR and Western blot methods, respectively. The results showed that there were upregulated expressions of ZnT-1, ZnT-2, LC3, and beclin-1 of RS group. Pretreatment with 3-MA remarkably attenuated seizure-induced ZnT-1, ZnT-2, LC3, and beclin-1 increase. Additionally, linear correlations could be observed between LC3–Beclin1, LC3–ZnT-2, Beclin1–ZnT2, Beclin1–ZnT3, and among ZnT1∼ZnT3 in control group, while the linear correlations could be observed between LC3–Beclin1, Beclin1–ZnT2, and Beclin1–ZnT3 in RS group. These results demonstrate, for the first time, that there exists an interaction of Zn2+ with autophagic signals that are immediately activated in hippocampus after recurrent neonatal seizures, which might play a key role in neonatal seizure-induced excitotoxicity.  相似文献   

11.
Constraint-induced movement therapy (CIMT), which involves restraint of the nonimpaired arm coupled with physiotherapy for the impaired arm, lessens impairment and disability in stroke patients. Surprisingly, immediate ipsilateral forelimb immobilization exacerbates brain injury in rats. We tested whether immediate ipsilateral restraint for 7 days aggravates injury after a devascularization lesion in rats. Furthermore, we hypothesized that ipsilateral restraint aggravates injury by causing hyperthermia. In experiment 1, each rat received two lesions, one in the motor cortex and one in the visual cortex. Ipsilateral restraint increased only the motor cortex lesion. In additional rats, no differences in core temperature occurred after ipsilateral or contralateral restraint. Thus, ipsilateral restraint does not aggravate injury by a systemic side effect. In experiment 2, we hypothesized that ipsilateral restraint causes hyperthermia in the region surrounding the initial cortical lesion. Brain temperature, measured via telemetry, was significantly higher (approximately 1 degrees C for 24 h) with ipsilateral restraint. A third experiment similarly found that ipsilateral restraint aggravates injury and causes local cortical hyperthermia and that contralateral restraint with externally induced mild hyperthermia aggravates injury. In conclusion, immediate ipsilateral restraint aggravates injury apparently by localized events that include hyperthermia. Caution must be exercised in applying early CIMT to humans, as hyperthermia is detrimental.  相似文献   

12.
目的:探讨肢体缺血/再灌注(LI/R)后,脑组织损伤的发生及MK801的影响。方法:采用文献[4]方法复制大鼠肢体缺血再灌损伤模型,给予MK801处理,观察各组动物脑组织中丙二醛(MDA)含量的变化,TUNEL法检测细胞凋亡情况,免疫组化和Western印迹法检测凋亡相关因子Bcl-2、细胞色素C(cytoC)、Caspase-3表达的变化。结果:大鼠LI/R后,脑组织中MDA含量升高,中脑红核区有大量胞浆呈棕色的Bcl-2、cytoC、Caspase-3蛋白阳性细胞分布,且细胞凋亡明显增加。MK801干预组与LI/R组相比MDA含量显著下降,Bcl-2、cytoC、Caspase-3蛋白表达降低,差异显著,且细胞凋亡相应降低。结论:凋亡相关因素Bcl-2、cytoC、Caspase-3变化介导的细胞凋亡参与大鼠LI/R后所致脑损伤过程。减弱谷氨酸兴奋性毒性作用及氧自由基损伤、影响凋亡相关基因表达可能是MK801脑保护的机制之一。  相似文献   

13.
Autophagy, a catabolic process by which cytoplasmic components are degraded in lysosomes, plays an important role in the maintenance of cellular homeostasis. Dysregulation of autophagy is associated with several diseases. However, few studies have addressed the role of autophagy in the lung, and its role in lung diseases remains unclear. In the present study, we examined the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on autophagy in A549 cells and explored the underlying mechanisms. We showed that TRAIL promoted autophagosome formation, as detected by the levels of LC3-II, and its effect on promoting autophagy was dependent on the expression of the autophagy related genes (ATGs) Atg5, Atg7, and beclin-1. TRAIL-induced ATG expression was attenuated by JNK silencing or treatment with the JNK inhibitor SP600125, indicating the involvement of the JNK pathway. Crosstalk between autophagy and apoptosis was demonstrated by silencing the autophagy related genes Atg5, Atg7, and beclin-1, and the dependence of TRAIL-induced apoptosis on autophagy-related gene expression. Taken together, our results indicate that TRAIL promotes autophagy in A549 cells via a mechanism involving the modulation of ATG expression through the JNK pathway. Inhibition of autophagy enhanced TRAIL-induced cell proliferative inhibition and apoptosis in A549 cells.  相似文献   

14.
Uchiyama Y  Koike M  Shibata M 《Autophagy》2008,4(4):404-408
Hypoxia/ischemia (H/I) brain injury at birth is an important cause of cerebral palsy, mental retardation, and epilepsy. The H/I insult also causes energy failure, oxidative stress, and unbalanced ion fluxes, leading to high induction of autopahgy in brain neurons. Since the mice unable to execute autophagy (due to brain-specific deletion of Atg7 or Atg5) die by massive loss of cerebral and cerebellar neurons with accumulation of ubiquitin aggregates, induction of neuronal autophagy after H/I injury is generally considered neuroprotective by maintaining cellular homeostasis. However, our recent results show that hippocampal pyramidal neurons undergoing caspase-dependent or -independent death following neonatal H/I injury possess abundant LC3-positive granules, and such H/I neuronal death is largely prevented by Atg7 deficiency. In the present review we discuss the roles of autophagy and other forms of programmed cell death in the neonatal H/I brain insult.  相似文献   

15.
《Autophagy》2013,9(4):404-408
Hypoxia/ischemia (H/I) brain injury at birth is an important cause of cerebral palsy, mental retardation, and epilepsy. The H/I insult also causes energy failure, oxidative stress, and unbalanced ion fluxes, leading to high induction of autopahgy in brain neurons. Since the mice unable to execute autophagy (due to brain-specific deletion of Atg7 or Atg5) die by massive loss of cerebral and cerebellar neurons with accumulation of ubiquitin aggregates, induction of neuronal autophagy after H/I injury is generally considered neuroprotective by maintaining cellular homeostasis. However, our recent results show that hippocampal pyramidal neurons undergoing caspase-dependent or -independent death following neonatal H/I injury possess abundant LC3-positive granules, and such H/I neuronal death is largely prevented by Atg7 deficiency. In the present review we discuss the roles of autophagy and other forms of programmed cell death in the neonatal H/I brain insult.  相似文献   

16.
Recent studies have demonstrated that the downstream caspases, such as caspase 3, act as executors of the apoptotic cascade after traumatic brain injury (TBI) in vivo. However, little is known about the involvement of caspases in the initiation phase of apoptosis, and the interaction between these initiator caspases (e.g. caspase 8) and executor caspases after experimental brain injuries in vitro and in vivo. This study investigated the temporal expression and cell subtype distribution of procaspase 8 and cleaved caspase 8 p20 from 1 h to 14 days after cortical impact-induced TBI in rats. Caspase 8 messenger RNA levels, estimated by semiquantitaive RT-PCR, were elevated from 1 h to 72 h in the traumatized cortex. Western blotting revealed increased immunoreactivity for procaspase 8 and the proteolytically active subunit of caspase 8, p20, in the ipsilateral cortex from 6 to 72 h after injury, with a peak at 24 h after TBI. Similar to our previous studies, immunoreactivity for the p18 fragment of activated caspase 3 also increased in the current study from 6 to 72 h after TBI, but peaked at a later timepoint (48 h) as compared with proteolyzed caspase 8 p20. Immunohistologic examinations revealed increased expression of caspase 8 in neurons, astrocytes and oligodendrocytes. Assessment of DNA damage using TUNEL identified caspase 8- and caspase 3-immunopositive cells with apoptotic-like morphology in the cortex ipsilateral to the injury site, and immunohistochemical investigations of caspase 8 and activated caspase 3 revealed expression of both proteases in cortical layers 2-5 after TBI. Quantitative analysis revealed that the number of caspase 8 positive cells exceeds the number of caspase 3 expressing cells up to 24 h after impact injury. In contrast, no evidence of caspase 8 and caspase 3 activation was seen in the ipsilateral hippocampus, contralateral cortex and hippocampus up to 14 days after the impact. Our results provide the first evidence of caspase 8 activation after experimental TBI and suggest that this may occur in neurons, astrocytes and oligodendrocytes. Our findings also suggest a contributory role of caspase 8 activation to caspase 3 mediated apoptotic cell death after experimental TBI in vivo.  相似文献   

17.
大鼠液压冲击脑损伤热休克蛋白70基因表达的研究   总被引:3,自引:0,他引:3  
目的:观察大鼠侧位液压冲击脑损伤时HSP70的表达分布特点及时序性变化。方法:雄性SD大鼠,给以0.2MPa液压冲击,造成脑损伤,应用免疫组织化学技术观察冲击后不同时间HSP70在脑组织内的表达特点。结果:冲击侧大脑皮层和脑干SHP70阳性神经辊冲击后2h和4h出现,7并逐渐增强直至12h;冲击后4h,冲击侧海马HSP70免疫阳性细胞开始出现,4 ̄12h,海马HSP70免疫阳性细胞数无明显改变。结  相似文献   

18.
Pancreatic triglyceride lipase (PTL), an enzyme of digestive system, plays very important roles in the digestion and absorption of lipids. However, its distribution and function in the central nervous system (CNS) remains unclear. In the present study, we mainly investigated the expression and cellular localization of PTL during traumatic brain injury (TBI). Western blot and RT–PCR analysis revealed that PTL was present in normal rat brain cortex. It gradually increased, reached a peak at the 3rd day after TBI, and then decreased. Double immunofluorescence staining showed that PTL was co-expressed with neuron, but had a few colocalizations in astrocytes. When TBI occurred in the rat cortex, the expression of PTL gradually increased, reached the peak at the 3rd day after TBI, and then decreased. Importantly, more PTL was colocalized with astrocytes, which is positive for proliferating cell nuclear antigen (PCNA). In addition, Western blot detection showed that the 3rd day post injury was not only the proliferation peak indicated by the elevated expression of PCNA, glial fibrillary acidic protein (GFAP) and cyclin D1, but also the apoptotic peak implied by the alteration of caspase-3 and bcl-2. These data suggested that PTL may be involved in the pathophysiology of TBI and PTL may be complicated after injury, more PTL was colocalized with astrocytes. Importantly, injury-induced expression of PTL was colabelled by proliferating cell nuclear antigen (proliferating cells marker), and the western blot for GFAP, PCNA and cyclin D1, showed that 3 days post injury was the proliferation peak, in coincidence to it, the protein level change of caspase-3 and bcl-2 revealed that the stage was peak of apoptotic too. These data suggested that PTL may be involved in the pathophysiology of TBI and that PTL may be implicated in the proliferation of astrocytes and the recovery of neurological outcomes. But the inherent mechanisms remained unknown. Further studies are needed to confirm the exact role of PTL after brain injury.  相似文献   

19.
Traumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production. Notwithstanding that recent studies demonstrated that caloric restriction (CR) lasting several months prior to an acute TBI exhibits neuroprotective properties, understanding how exactly CR influences secondary injury is still unclear. The goal of the present study was to examine whether CR (50% of daily food intake for 3 months) alleviates the effects of secondary injury on neuronal loss following cortical stab injury (CSI). To this end, we examined the effects of CR on the microglial activation, tumor necrosis factor-α (TNF-α) and caspase-3 expression in the ipsilateral (injured) cortex of the adult rats during the recovery period (from 2 to 28 days) after injury. Our results demonstrate that CR prior to CSI suppresses microglial activation, induction of TNF-α and caspase-3, as well as neurodegeneration following injury. These results indicate that CR strongly attenuates the effects of secondary injury, thus suggesting that CR may increase the successful outcome following TBI.  相似文献   

20.
Traumatic brain injury (TBI) results in significant inflammation which contributes to the evolving pathology. Previously, we have demonstrated that cyclic AMP (cAMP), a molecule involved in inflammation, is down‐regulated after TBI. To determine the mechanism by which cAMP is down‐regulated after TBI, we determined whether TBI induces changes in phosphodiesterase (PDE) expression. Adult male Sprague Dawley rats received moderate parasagittal fluid‐percussion brain injury (FPI) or sham injury, and the ipsilateral, parietal cortex was analyzed by western blotting. In the ipsilateral parietal cortex, expression of PDE1A, PDE4B2, and PDE4D2, significantly increased from 30 min to 24 h post‐injury. PDE10A significantly increased at 6 and 24 h after TBI. Phosphorylation of PDE4A significantly increased from 6 h to 7 days post‐injury. In contrast, PDE1B, PD4A5, and PDE4A8 significantly decreased after TBI. No changes were observed with PDE1C, PDE3A, PDE4B1/3, PDE4B4, PDE4D3, PDE4D4, PDE8A, or PDE8B. Co‐localization studies showed that PDE1A, PDE4B2, and phospho‐PDE4A were neuronally expressed, whereas PDE4D2 was expressed in neither neurons nor glia. These findings suggest that therapies to reduce inflammation after TBI could be facilitated with targeted therapies, in particular for PDE1A, PDE4B2, PDE4D2, or PDE10A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号