首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
hnRNP K and hnRNP E1/E2 are RNA-binding proteins comprised of three hnRNP K-homology (KH) domains. These proteins are involved in the translational control and stabilization of mRNAs in erythroid cells. hnRNP E1 and hnRNP K regulate the translation of reticulocyte 15-lipoxygenase (r15-LOX) mRNA. Both proteins bind specifically to the differentiation control element (DICE) in the 3' untranslated region (3'UTR) of the r15-LOX mRNA. It has been shown that hnRNP K is a substrate of the tyrosine kinase c-Src and that tyrosine phosphorylation by c-Src inhibits the binding of hnRNP K to the DICE. Here, we investigate which of the three KH domains of hnRNP E1 and hnRNP K mediate the DICE interaction. Using RNA-binding assays, we demonstrate DICE-binding of the KH domains 1 and 3 of hnRNP E1, and KH domain 3 of hnRNP K. Furthermore, with RNA-binding assays, NMR experiments and in vitro translation studies, we show that tyrosine 458 in KH domain 3 of hnRNP K is important for the DICE interaction and we provide evidence that it is a target of c-Src.  相似文献   

2.
hnRNPK and hnRNP E1/E2 mediate translational silencing of cellular and viral mRNAs in a differentiation-dependent way by binding to specific regulatory sequences. The translation of 15-lipoxygenase (LOX) mRNA in erythroid precursor cells and of the L2 mRNA of human papilloma virus type 16 (HPV-16) in squamous epithelial cells is silenced when either of these cells is immature and is activated in maturing cells by unknown mechanisms. Here we address the question of how the silenced mRNA can be translationally activated. We show that hnRNP K and the c-Src kinase specifically interact with each other, leading to c-Src activation and tyrosine phosphorylation of hnRNP K in vivo and in vitro. c-Src-mediated phosphorylation reversibly inhibits the binding of hnRNP K to the differentiation control element (DICE) of the LOX mRNA 3' untranslated region in vitro and specifically derepresses the translation of DICE-bearing mRNAs in vivo. Our results establish a novel role of c-Src kinase in translational gene regulation and reveal a mechanism by which silenced mRNAs can be translationally activated.  相似文献   

3.
Arginine methylation is a post-translational modification found in many RNA-binding proteins. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) from HeLa cells was shown, by mass spectrometry and Edman degradation, to contain asymmetric N(G),N(G)-dimethylarginine at five positions in its amino acid sequence (Arg256, Arg258, Arg268, Arg296, and Arg299). Whereas these five residues were quantitatively modified, Arg303 was asymmetrically dimethylated in <33% of hnRNP K and Arg287 was monomethylated in <10% of the protein. All other arginine residues were unmethylated. Protein-arginine methyltransferase 1 was identified as the only enzyme methylating hnRNP K in vitro and in vivo. An hnRNP K variant in which the five quantitatively modified arginine residues had been substituted was not methylated. Methylation of arginine residues by protein-arginine methyltransferase 1 did not influence the RNA-binding activity, the translation inhibitory function, or the cellular localization of hnRNP K but reduced the interaction of hnRNP K with the tyrosine kinase c-Src. This led to an inhibition of c-Src activation and hnRNP K phosphorylation. These findings support the role of arginine methylation in the regulation of protein-protein interactions.  相似文献   

4.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its carboxy-terminal tail. A kinase that phosphorylates Tyr527, called Csk, has recently been identified. We expressed c-Src in yeast to test the role of the SH2 and SH3 domains of Src in the negative regulation exerted by Tyr527 phosphorylation. Inducible expression of c-Src in Schizosaccharomyces pombe caused cell death. Co-expression of Csk counteracted this effect. Src proteins mutated in either the SH2 or SH3 domain were as lethal as wild type c-Src, but were insensitive to Csk, even though they were substrates for Csk in vivo. Peptide binding experiments revealed that Src proteins with mutant SH3 domains adopted a conformation in which the SH2 domain was not interacting with the tail. These data support the model of an SH2 domain-phosphorylated tail interaction repressing c-Src activity, but expand it to include a role for the SH3 domain. We propose that the SH3 domain contributes to the maintenance of the folded, inactive configuration of the Src molecule by stabilizing the SH2 domain-phosphorylated tail interaction. Moreover, the system we describe here allows for further study of the regulation of tyrosine kinases in a neutral background and in an organism amenable to genetic analysis.  相似文献   

5.
The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.  相似文献   

6.
Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.  相似文献   

7.
Interleukin-1 (IL-1) mediates numerous host responses through the rapid activation of nuclear factor-kappa B (NF-kappa B), but the signal pathways leading to NF-kappa B activation are regulated at multiple stages. Here, we propose a novel regulatory system for IL-1-induced NF-kappa B activation by a tyrosine kinase, c-Src. The kinase activity of c-Src increases in an IL-1-dependent manner and the ectopic expression of c-Src augments IL-1-induced NF-kappa B activation, suggesting the involvement of c-Src in IL-1 signaling. However, a Src family inhibitor, PP2 failed to inhibit IL-1-induced NF-kappa B activation, and the expression of a c-Src mutant lacking kinase activity (c-Src KD) augmented IL-1-induced NF-kappa B activation as well as wild type c-Src, indicating that the tyrosine kinase activity is not required for IL-1-induced NF-kappa B activation. Furthermore, a physiological interaction between c-Src and I kappa B kinase gamma (IKK gamma) was observed, implying the involvement of c-Src in the IKK-complex. While c-Src augmented IL-1-induced IKK activation independent of its kinase activity, the region comprising amino acids 361-440 in the c-Src kinase domain are required for NF-kappa B activation. The same region of c-Src is also required for IL-1-induced IKK activation and the association with IKK gamma. Taken together, our results suggest that c-Src plays a critical role in IL-1-induced NF-kappa B activation through the IKK complex.  相似文献   

8.
We report that the actin filament-associated protein AFAP-110 is required to mediate protein kinase Calpha (PKCalpha) activation of the nonreceptor tyrosine kinase c-Src and the subsequent formation of podosomes. Immunofluorescence analysis demonstrated that activation of PKCalpha by phorbol 12-myristate 13-acetate (PMA), or ectopic expression of constitutively activated PKCalpha, directs AFAP-110 to colocalize with and bind to the c-Src SH3 domain, resulting in activation of the tyrosine kinase. Activation of c-Src then directs the formation of podosomes, which contain cortactin, AFAP-110, actin, and c-Src. In a cell line (CaOV3) that has very little or no detectable AFAP-110, PMA treatment was unable to activate c-Src or effect podosome formation. Ectopic expression of AFAP-110 in CaOV3 cells rescued PKCalpha-mediated activation of c-Src and elevated tyrosine phosphorylation levels and subsequent formation of podosomes. Neither expression of activated PKCalpha nor treatment with PMA was able to induce these changes in CAOV3 cells expressing mutant forms of AFAP-110 that are unable to bind to, or colocalize with, c-Src. We hypothesize that one major function of AFAP-110 is to relay signals from PKCalpha that direct the activation of c-Src and the formation of podosomes.  相似文献   

9.
10.
Amplification and overexpression of the neu (c-erbB2) proto-oncogene has been implicated in the pathogenesis of 20 to 30% of human breast cancers. Although the activation of Neu receptor tyrosine kinase appears to be a pivotal step during mammary tumorigenesis, the mechanism by which Neu signals cell proliferation is unclear. Molecules bearing a domain shared by the c-Src proto-oncogene (Src homology 2) are thought to be involved in signal transduction from activated receptor tyrosine kinases such as Neu. To test whether c-Src was implicated in Neu-mediated signal transduction, we measured the activity of the c-Src tyrosine kinase in tissue extracts from either mammary tumors or adjacent mammary epithelium derived from transgenic mice expressing a mouse mammary tumor virus promoter/enhancer/unactivated neu fusion gene. The Neu-induced mammary tumors possessed six- to eightfold-higher c-Src kinase activity than the adjacent epithelium. The increase in c-Src tyrosine kinase activity was not due to an increase in the levels of c-Src but rather was a result of the elevation of its specific activity. Moreover, activation of c-Src was correlated with its ability to complex tyrosine-phosphorylated Neu both in vitro and in vivo. Together, these observations suggest that activation of the c-Src tyrosine kinase during mammary tumorigenesis may occur through a direct interaction with activated Neu.  相似文献   

11.
12.
The amino-termina, noncatalytic half of Src contains two domains, designated the Src homology 2 (SH2) and Src homology 3 (SH3) domains, that are highly conserved among members of the Src family of tyrosine kinases. The SH2 domain (which can be further divided into the B and C homology boxes) and the SH3 domain (also referred to as the A box) are also found in several proteins otherwise unrelated to protein tyrosine kinases. It is believed that these domains are important for directing specific protein-protein interactions necessary for the proper functioning of Src. To determine the importance of the SH2 and SH3 domains in regulating the functions of c-Src, we evaluated mutants of c-Src lacking the A box (residues 88 to 137), the B box (residues 148 to 187) or the C box (residues 220 to 231). Each of these deletions caused a 14- to 30-fold increase in the in vitro level of kinase activity of c-Src. Chicken embryo fibroblasts expressing the deletion mutants displayed a transformed cell morphology, formed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Src substrates p36, p85, p120, p125, the GTPase-activating protein (GAP), and several GAP-associated proteins were phosphorylated on tyrosine in cells expressing the A, B, or C box deletion mutant. p110 was highly phosphorylated in cells expressing the C box mutant, was weakly phosphorylated in cells expressing the B box mutant, and was not phosphorylated in cells expressing the A box mutant. Expression of the mutant proteins caused a reorganization of the actin cytoskeleton similar to that seen in v-Src-transformed cells. In addition, deletion of the A, B, or C box did not diminish the transforming or enzymatic activity of an activated variant of c-Src, E378G. These data indicate that deletion of the A, B, or C homology box causes an activation of the catalytic and transforming potential of c-Src and that while these mutations caused subtle differences in substrate phosphorylation, the homology boxes are not required for many of the phenotypic changes associated with transformation by Src.  相似文献   

13.
14.
To elucidate the molecular mechanisms by which human epidermal growth factor receptor/heregulin (HER2/HRG) influence the migratory potential of breast cancer cells, we have used phospho-specific antibodies against c-Src kinase and focal adhesion kinase (FAK). This study establishes that HER2/HRG signaling selectively upregulates Tyr phosphorylation of c-Src at Tyr-215 located within the SH2 domain, increases c-Src kinase activity and selectively upregulates Tyr phosphorylation of FAK at Tyr-861. HER2-overexpressing tumors showed increased levels of c-Src phosphorylation at Tyr-215. These findings suggest that HER2/HRG influence metastasis of breast cancer cells through a novel signaling pathway involving phosphorylation of FAK tyrosine 861 via activation of c-Src tyrosine 215.  相似文献   

15.
c-Src is a tightly regulated non-receptor tyrosine kinase. We describe the C-terminus of c-Src as a ligand for a PDZ (postsynaptic density 95, PSD-95; discs large, Dlg; zonula occludens-1, ZO-1) domain. The C-terminal residue Leu of c-Src is essential for binding to a PDZ domain. Mutation of this residue does not affect the intrinsic kinase activity in vitro, but interferes with c-Src regulation in cells. As a candidate PDZ protein, we analysed AF-6, a junctional adhesion protein. The AF-6 PDZ domain restricts the number of c-Src substrates, whereas knockdown of AF-6 has the opposite effect. Binding of c-Src to the AF-6 PDZ domain interferes with phosphorylation of c-Src at Tyr527 by the C-terminal kinase, and reduces c-Src autophosphorylation at Tyr416, resulting in a moderately activated c-Src kinase. Unphosphorylated Tyr527 allows binding of c-Src to AF-6. This can be overcome by overexpression of CSK or strong activation of c-Src. c-Src is recruited by AF-6 to cell-cell contact sites, suggesting that c-Src is regulated by a PDZ protein in special cellular locations. We identified a novel type of c-Src regulation by interaction with a PDZ protein.  相似文献   

16.
17.
Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wild-type PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathways.  相似文献   

18.
Phosphoinositide-3-kinase (PI3K) is a lipid kinase, which phosphorylates the D3 position of phosphoinositides, and is known to be activated by a host of protein tyrosine kinases. PI3K plays an important role in mitogenesis in several cell systems. However, whether parathyroid hormone (PTH) affects the activity and functional roles of PI3K in intestinal cells remain to be determined. The objective of this study was to identify and characterize the PI3K pathway, and its relation to other non-receptor tyrosine kinases in mediating PTH signal transduction in rat enterocytes. PTH dose- and time-dependently increased PI3K activity with a peak occurring at 2 min. The tyrosine kinase inhibitor genistein, c-Src inhibitor PP1 and two structurally different inhibitors of PI3K, LY294002 and wortmannin, suppressed PI3K activity dependent on PTH. Co-immunoprecipitation analysis showed a constitutive association between c-Src and PI3K, which was enhanced by PTH treatment, suggesting that the cytosolic tyrosine kinase forms an immunocomplex with PI3K probably via the N-SH2 domain of the p85alpha regulatory subunit. In response to PTH, tyrosine phosphorylation of p85alpha was enhanced, effect that was abolished by PP1, the inhibitor of c-Src kinase. PTH causes a rapid (0.5-5 min) phosphorylation of Akt/PKB, effect that was abrogated by PI3K inhibitors, indicating that in rat enterocytes, PI3K is an upstream mediator of Akt/PKB activation by PTH. We report here that PI3K is also required for PTH activation of the mitogen-activated protein kinases ERK1 and ERK2. Taken together, the present study demonstrate, for the first time, that PTH rapidly and transiently stimulates PI3K activity and its down effector Akt/PKB in rat enterocytes playing c-Src kinase a central role in PTH-dependent PI3K activation and that PI3K signaling pathway contributes to PTH-mediated MAPK activation.  相似文献   

19.
The regulation of the activity of Abl and Src family tyrosine kinases is mediated by intramolecular interactions between the SH3, SH2, and kinase (SH1) domains. We have determined the crystal structure of an unphosphorylated form of c-Src in which the SH2 domain is not bound to the C-terminal tail. This results in an open structure where the kinase domain adopts an active conformation and the C terminus binds within a hydrophobic pocket in the C-terminal lobe. NMR binding studies support the hypothesis that an N-terminal myristate could bind in this pocket, as observed for Abl, suggesting that c-Src may also be regulated by myristate binding. In addition, the structure contains a des-methyl analog of the antileukemia drug imatinib (STI571; Gleevec). This structure reveals why the drug shows a low affinity for active kinase conformations, contributing to its excellent kinase selectivity profile.  相似文献   

20.
Furin is a member of the proprotein convertase family, which is capable of cleaving the precursors of a wide variety of substrates including membrane-type 1 matrix metalloproteinase (MT1-MMP) proenzyme. c-Src is activated by growth factors, and has been linked with a poor prognosis in pancreatic cancer (PCa). Both c-Src and Furin play crucial roles in tumorigenesis, and the mechanism controlling their association is not understood. Modulation of the association between Furin and pro-MT1-MMP by c-Src inhibitor PP2 was evaluated by western blotting, assay of in vitro enzyme, co-immunoprecipitation (co-IP), and confocal immunofluorescence microscopy. Human platelet-derived growth factor BB (PDGF-BB) activated c-Src and induced c-Src-dependent association of Furin with pro-MT1-MMP in HPAC pancreatic cancer cells. Co-IP and confocal immunofluorescence assays revealed that c-Src interacts with Furin in vivo. The SH2 domain appeared to be important for c-Src interaction with Furin. In addition, we showed that Furin protein is tyrosine phosphorylated. Association between Furin and MT1-MMP is regulated by the tyrosine kinase c-Src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号