首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R F Warren  A Henk  P Mowery  E Holub    R W Innes 《The Plant cell》1998,10(9):1439-1452
Recognition of pathogens by plants is mediated by several distinct families of functionally variable but structurally related disease resistance (R) genes. The largest family is defined by the presence of a putative nucleotide binding domain and 12 to 21 leucine-rich repeats (LRRs). The function of these LRRs has not been defined, but they are speculated to bind pathogen-derived ligands. We have isolated a mutation in the Arabidopsis RPS5 gene that indicates that the LRR region may interact with other plant proteins. The rps5-1 mutation causes a glutamate-to-lysine substitution in the third LRR and partially compromises the function of several R genes that confer bacterial and downy mildew resistance. The third LRR is relatively well conserved, and we speculate that it may interact with a signal transduction component shared by multiple R gene pathways.  相似文献   

2.
Plant disease resistance (R) genes encode proteins that both determine recognition of specific pathogen-derived avirulence (Avr) proteins and initiate signal transduction pathways leading to complex defense responses. Recent developments suggest that recognition specificity of R proteins is determined by either a protein kinase domain or by a region consisting of leucine-rich repeats. R genes conferring resistance to bacterial, viral, and fungal pathogens appear to use multiple signaling pathways, some of which involve distinct proteins and others which converge upon common downstream effectors. Manipulation of R genes and their signaling pathways by transgenic expression is a promising strategy to improve disease resistance in plants.  相似文献   

3.
近十年来,植物抗病分子机制研究取得显著进展。综述了植物抗病基因的克隆及其结构分析、病原菌无毒基因及其相关致病因子的克隆与研究、信号传导相关因子的克隆及其结构分析以及植物-病原菌的相互作用研究,重点介绍了以植物特异抗病基因为介导的诱导防卫作用机制(包括抗病基因编码毒素蛋白,进而抑制病原菌的繁殖;显性基因编码病原菌致病性的靶标物;抗病基因表达产物直接引发抗病反应和基因对基因的抗病作用机制等)的研究进展,以期为植物抗病育种提供有益的信息。  相似文献   

4.
5.
植物的先天免疫主要包括模式识别受体对保守的微生物病原相关分子模式的识别和抗病蛋白对效应蛋白的识别。植物与病原体互作过程中存在广泛的信号交流,信号分子在植物与病原体的互作攻防中发挥了重要的调控作用,决定了二者的竞争关系。当前,大量植物与病原体互作中的信号分子被定位和克隆,其作用方式被揭示。本文总结了这些信号分子及其在植物免疫过程中的作用机制,主要包括植物细胞表面的模式识别受体分子对病原相关分子模式的识别与应答,植物抗病蛋白对病原体效应蛋白的识别与应答,以及免疫反应下游相关信号分子及其在植物抗病中的作用。此外,本文对未来相关研究提出了展望。  相似文献   

6.
植物抗病分子机制研究进展   总被引:13,自引:0,他引:13  
近十年来,植物抗病分子机制研究取得显著进展.综述了植物抗病基因的克隆及其结构分析、病原菌无毒基因及其相关致病因子的克隆与研究、信号传导相关因子的克隆及其结构分析以及植物-病原菌的相互作用研究,重点介绍了以植物特异抗病基因为介导的诱导防卫作用机制(包括抗病基因编码毒素蛋白,进而抑制病原菌的繁殖;显性基因编码病原菌致病性的靶标物;抗病基因表达产物直接引发抗病反应和基因对基因的抗病作用机制等)的研究进展,以期为植物抗病育种提供有益的信息.  相似文献   

7.
In contrast to large-effect qualitative disease resistance,quantitative disease resistance(QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding.The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years.In this review,we summarize the genes that have been associated with plant QDR and their biological functions.Many QDR genes belong to the canonical resistance gene catego...  相似文献   

8.
植物病原物无毒基因及其功能   总被引:5,自引:0,他引:5  
植物抗病基因与病原物无毒基因产物间直接或间接相互作用导致产生的基因对基因抗性是植物抗病性的重要形式。无毒基因已在多种植物病原物 ,包括真菌、细菌、病毒和卵菌等中得到克隆。绝大多数已克隆无毒基因之间 ,及其与已知蛋白之间 ,均无显著序列同源性。然而 ,多数已克隆植物抗病基因有较高序列一致性 ,产物往往具有相似的结构域。由序列一致性很高的抗病基因产物与没有明显序列同源性的无毒基因产物相互作用 ,介导产生的过敏性细胞坏死和抗病性 ,在产生速度、强度和组织特异性等方面均可能有显著差异。无毒基因具有双重功能 :在含互补抗病基因植物中表现无毒效应 ,而在不含互补抗病基因植物中显示小种、菌株、致病型、或种特异性毒性效应  相似文献   

9.
Plants utilize tightly regulated mechanisms to defend themselves against pathogens. Initial recognition results in activation of specific Resistance (R) proteins that trigger downstream immune responses, in which the signaling networks remain largely unknown. A point mutation in SUPPRESSOR OF NPR1 CONSTITUTIVE1 (SNC1), a RESISTANCE TO PERONOSPORA PARASITICA4 R gene homolog, renders plants constitutively resistant to virulent pathogens. Genetic suppressors of snc1 may carry mutations in genes encoding novel signaling components downstream of activated R proteins. One such suppressor was identified as a novel loss-of-function allele of ENHANCED RESPONSE TO ABSCISIC ACID1 (ERA1), which encodes the beta-subunit of protein farnesyltransferase. Protein farnesylation involves attachment of C15-prenyl residues to the carboxyl termini of specific target proteins. Mutant era1 plants display enhanced susceptibility to virulent bacterial and oomycete pathogens, implying a role for farnesylation in basal defense. In addition to its role in snc1-mediated resistance, era1 affects several other R-protein-mediated resistance responses against bacteria and oomycetes. ERA1 acts partly independent of abscisic acid and additively with the resistance regulator NON-EXPRESSOR OF PR GENES1 in the signaling network. Defects in geranylgeranyl transferase I, a protein modification similar to farnesylation, do not affect resistance responses, indicating that farnesylation is most likely specifically required in plant defense signaling. Taken together, we present a novel role for farnesyltransferase in plant-pathogen interactions, suggesting the importance of protein farnesylation, which contributes to the specificity and efficacy of signal transduction events.  相似文献   

10.
Pathogen infection in plants is often limited by a multifaceted defense response triggered by resistance genes. The most prevalent class of resistance proteins includes those that contain a nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain. Over the past 15 years, more than 50 novel NBS-LRR class resistance genes have been isolated and characterized; they play a significant role in activating conserved defense-signaling networks. Recent molecular research on NBS-LRR resistance proteins and their signaling networks has the potential to broaden the use of resistance genes for disease control. Various transgenic approaches have been tested to broaden the disease resistance spectrum using NBS-LRR genes. This review highlights the recent progress in understanding the structure, function, signal transduction ability of NBS-LRR resistance genes in different host-pathogen systems and suggests new strategies for engineering pathogen resistance in crop plants.  相似文献   

11.
12.
Zhang Y  Goritschnig S  Dong X  Li X 《The Plant cell》2003,15(11):2636-2646
Plants have evolved sophisticated defense mechanisms against pathogen infections, during which resistance (R) genes play central roles in recognizing pathogens and initiating defense cascades. Most of the cloned R genes share two common domains: the central domain, which encodes a nucleotide binding adaptor shared by APAF-1, certain R proteins, and CED-4 (NB-ARC), plus a C-terminal region that encodes Leu-rich repeats (LRR). In Arabidopsis, a dominant mutant, suppressor of npr1-1, constitutive 1 (snc1), was identified previously that constitutively expresses pathogenesis-related (PR) genes and resistance against both Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2. The snc1 mutation was mapped to the RPP4 cluster. In snc1, one of the TIR-NB-LRR-type R genes contains a point mutation that results in a single amino acid change from Glu to Lys in the region between NB-ARC and LRR. Deletions of this R gene in snc1 reverted the plants to wild-type morphology and completely abolished constitutive PR gene expression and disease resistance. The constitutive activation of the defense responses was not the result of the overexpression of the R gene, because its expression level was not altered in snc1. Our data suggest that the point mutation in snc1 renders the R gene constitutively active without interaction with pathogens. To analyze signal transduction pathways downstream of snc1, epistasis analyses between snc1 and pad4-1 or eds5-3 were performed. Although the resistance signaling in snc1 was fully dependent on PAD4, it was only partially affected by blocking salicylic acid (SA) synthesis, suggesting that snc1 activates both SA-dependent and SA-independent resistance pathways.  相似文献   

13.
Plant pathogens deliver a variety of virulence factors to host cells to suppress basal defence responses and create suitable environments for their propagation. Plants have in turn evolved disease resistance genes whose products detect the virulence factors as a signal of invasion and activate effective defence responses. Understanding how a virulence effector contributes to virulence on susceptible hosts but becomes an avirulence factor that triggers defence responses on resistance hosts has been a major focus in plant research. Recent studies have shown that a growing list of pathogen-encoded effectors functions as proteases that are secreted into plant cells to modify host proteins. In addition, several plant proteases have been found to function in activation of the defence mechanism. These findings reveal that post-translational modification of host proteins through proteolytic processing is a widely used mechanism in regulating the plant defence response.  相似文献   

14.
15.
植物抗病基因结构、功能及其进化机制研究进展   总被引:9,自引:0,他引:9  
植物与病原菌在长期的共进化和相互选择的过程中,逐渐形成了组织障碍、非寄主抗性和小种专化抗性等有效的防御机制。小种专化抗性(基因对基因抗性)主要是由植物抗病基因识别相应的病原菌无毒基因并激活植物体内抗病信号进而抵御病原菌的侵染。从目前已克隆的 70 多个抗病基因来看,它们在结构上具有高度保守性,主要包括核苷酸结合位点(NBS),亮氨酸重复结构(LRR), 蛋白激酶结构域(PK), 果蝇蛋白 Toll 和哺乳动物蛋白质白细胞介素 1 受体[interleukin(IL)-1 receptor]类似结构域(TIR), 双螺旋结构(CC)或亮氨酸拉链(LZ)和跨膜结构域(TM)等,其在抗病基因与病原菌无毒(效应)蛋白互作以及植物内部免疫信号传导中起着重要的作用。同时,抗病基因又通过基因复制、遗传重组等进化机制形成多基因家族,为植物抗病的专化性和多样性提供了重要的遗传基础。本文主要讨论了近来已克隆抗病基因的结构特征、功能以及抗病基因进化机制研究的进展。  相似文献   

16.
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, has been associated with the development of Kaposi's sarcoma, pleural effusion lymphoma, and multicentric Castleman's disease. KSHV is a double-stranded DNA virus that has been classified as a gammaherpesvirus. The viral genome is approx, 160 kb long and encodes for several genes that are involved in cell signaling pathways. These include genes that are unique to the virus as well as viral homologues of cellular genes. The latter are likely to have been usurped from the host genome and include both virokines and viral receptor proteins. This article reviews how these KSHV proteins modulate cellular signal transduction pathways.  相似文献   

17.
In many plant-pathogen interactions, resistance is associated with the synthesis and accumulation of salicylic acid (SA) and pathogenesis-related (PR) proteins. At least two general classes of mutants with altered resistance to pathogen attack have been identified in Arabidopsis. One class exhibits increased susceptibility to pathogen infection; the other class exhibits enhanced resistance to pathogens. In an attempt to identify mutations in resistance-associated loci, we screened a population of T-DNA tagged Arabidopsis thaliana ecotype Wassilewskija (Ws) for mutants showing constitutive expression of the PR-1 gene (cep). A mutant was isolated and shown to constitutively express PR-1, PR-2, and PR-5 genes. This constitutive phenotype segregated as a single recessive trait in the Ws genetic background. The mutant also had elevated levels of SA, which are responsible for the cep phenotype. The cep mutant spontaneously formed hypersensitive response (HR)-like lesions on the leaves and cotyledons and also exhibited enhanced resistance to virulent bacterial and fungal pathogens. Genetic analyses of segregating progeny from outcrosses to other ecotypes unexpectedly revealed that alterations in more than one gene condition the constitutive expression of PR genes in the original mutant. One of the mutations, designated cpr20, maps to the lower arm of chromosome 4 and is required for the cep phenotype. Another mutation, which has been termed cpr21, maps to chromosome 1 and is often, but not always, associated with this phenotype. The recessive nature of the cep trait suggests that the CPR20 and CPR21 proteins may act as negative regulators in the disease resistance signal transduction pathway.  相似文献   

18.
Copines are calcium-dependent membrane-binding proteins that are highly conserved among protozoa, plants, nematodes and mammals. Although they are implicated in membrane trafficking and signal transduction, the functions of these proteins are not well understood. The Arabidopsis copine gene BON1/CPN1 was previously shown to negatively regulate a disease resistance (R) gene SNC1. Here we report that in Arabidopsis, as in other organisms, there is a family of copine genes, BON1, 2 and 3. Using double and triple mutant combinations we show that these three copine genes have overlapping functions essential for the viability of plants. The loss of function of BON1 combined with that of BON2 or BON3 leads to extensive cell death phenotypes resembling the hypersensitive response (HR) in defense responses. The resulting lethality can be suppressed by mutations in PAD4 or EDS1 which are required for R gene signaling and cell death control. Accession-dependent phenotypes of the mutant combinations suggest that the BON/CPN genes may together repress several R genes other than SNC1. Moreover, the mutant combinations exhibit developmental defects when R-gene-mediated defense responses are largely suppressed in pad4 and eds1 mutants. Thus, the copine family in Arabidopsis may have effects in promoting growth and development in addition to repressing cell death, and these two processes might be intricately intertwined.  相似文献   

19.
抗病原菌植物基因工程进展   总被引:5,自引:0,他引:5  
植物病原菌给农林生产带来巨大的损失,植物基因工程在培育抗病原菌植物方面是传统育种技术的补充和发展,短短几年,在抗细菌和抗真菌植物基因工程方面出现了一些全新的成功策略,这些范例都是针对病原菌的生理结构、致病机理及与植物的相互关系。本文概括论述了这些策略的基本思路并对其局限性加以探讨。随着植物病理学、植物分子生物学和病原菌分子生物学的研究进展,新的抗性策略将会出现。  相似文献   

20.
张敏 《植物学报》2008,25(5):624-630
植物营养贮存蛋白(vegetative storage proteins )是广泛存在于植物营养组织且含量丰富的蛋白, 最初是作为植物氮源的临时贮存形式而被人们认识。然而, 不同植物中的营养贮存蛋白的生化来源和生物学特性并不相同, 并且除了营养贮存功能外, 更重要的是这类蛋白在植物防御中也承担着多种多样的重要角色, 或具有抗虫活性, 或能够抑制病原细菌和病原真菌的生长, 或参与植物防御过程中的信号转导等。对植物营养贮存蛋白在植物防御中作用机制的深入研究将使这类蛋白在新型生物农药的开发和植物抗病基因工程中具有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号