首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A point mutation within exon 7 producing an amino acid coding change and a recognition site for the endonuclease Ncol has been reported in the HLA-Bw47-linked CYP21A pseudogene and some mutant CYP21B (steroid 21-hydroxylase) genes of patients with congenital adrenal hyperplasia (CAH). Whether this mutation is deleterious was not demonstrated. We analyzed DNA from various subjects for the presence of the exon 7 Ncol site: group 1, 10 normal subjects; group 2, 11 patients with salt-losing CAH; and group 3, 18 members of an Amish pedigree in which 10 expressed HLA-Bw47 not linked to CAH. Southern blots of Ncol-digested genomic DNA which were hybridized with CYP21 cDNA showed that four subjects of group 1 had a heterozygous Ncol pattern. In group 2, seven patients had the Ncol site; two of them were homozygous for the site and had deletions of both CYP21B genes. The other five were heterozygous for the Ncol site, which was linked to a CYP21B deletion and a HLA-Bw47 haplotype. In group 3, no one exhibited the exon 7 Ncol site. To map the Ncol sites to CYP21A or CYP21B in the normal subjects, DNA from the four Ncol heterozygous subjects was double digested with Ncol and Mbol and hybridized with CYP21 cDNA. Ncol-Mbol fragments unique to CYP21A were identified in all four, but the smaller CYP21B-specific fragments were not detected. Their genomic DNA in the region of exon 7 (bases +1167 to +2058) was then amplified, cloned, and sequenced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Congenital adrenal hyperplasia (CAH), one of the most common autosomal recessive disorders, is caused primarily by defects in the gene encoding steroid 21-hydroxylase, CYP21B. The molecular diagnosis of CAH, important for prenatal diagnosis, carrier detection, and a better understanding of the various clinical CAH forms, is complicated by the close proximity of a highly similar pseudogene, CYP21A, containing (and probably donating, by gene conversion-like events) most of the defects underlying CAH. In this study, we describe an efficient strategy to identify molecular defects causing CAH: polymerase chain reaction-amplified CYP21 loci are cloned and hybridized to a set of oligonucleotides, allowing rapid and allele-specific identification of all known CYP21B mutations relevant to 21-hydroxylase function. Possible new mutations can be identified by subsequent nucleic acid sequencing provided they reside within the cloned CYP21B fragment (from the TATA box to the 8th of the 10 CYP21B gene exons). Using this method, the CYP21B gene mutations of a heterozygous carrier and 25 CAH patients have been identified by oligonucleotide hybridization. All disease haplotypes seem to have been generated by recombinational events involving the CYP21A pseudogene. In 5 individuals, these data were subsequently verified by nucleic acid sequencing. The procedure can be used for diagnostic applications and may facilitate identification of new CYP21B defects.  相似文献   

3.
Disorders of the CYP21 gene, which is located within the major histocompatibility complex on the short arm of chromosome 6, are the leading causes of congenital adrenal hyperplasia (CAH). The coding gene and a highly homologous pseudogene are tandemly arranged with the two genes for the fourth component of complement (C4A and C4B). To analyse the prevalence rates of mutations of the CYP21 genes and the segregation of the CYP21 genes with their corresponding human leucocyte antigen (HLA)-haplotypes, 21 families with one or two children with the severe form of 21-hydroxylase deficiency were studied. Mutations of the CYP21 gene on their corresponding HLA-haplotype were detected by hybridisation of polymerase chain reaction (PCR)-amplified genomic DNA with sequence-specific oligonucleotides and solid phase direct sequencing. Our study has shown the following. (1) A single basepair mutation (AG or CG) within the second intron is the most frequent mutation leading to impaired 21-hydroxylase activity. This mutation is only detected in HLA-haplotypes associated with the salt-wasting form of CAH. (2) A large deletion of part or all of the CYP21 gene is associated with the HLA-haplotype A3, BW47, C6, DR7, DR53, DQ2 but is also observed in other HLA-haplotypes and can be detected by a simple rapid PCR restriction fragment length polymorphism method. (3) Two alleles of the coding CYP21 gene differing in a leucine codon within the first exon, (formerly described as a mutation associated with 21-hydroxylase deficiency) have been found with an equal distribution in patients with 21-hydroxylase deficiency, non-disease HLA-haplotypes and the local healthy controls.  相似文献   

4.

Background

Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia (CAH). Detection of underlying mutations in CYP21A2 gene encoding steroid 21-hydroxylase enzyme is helpful both for confirmation of diagnosis and management of CAH patients. Here we report a novel 9-bp insertion in CYP21A2 gene and its structural and functional consequences on P450c21 protein by molecular modeling and molecular dynamics simulations methods.

Methods

A 30-day-old child was referred to our laboratory for molecular diagnosis of CAH. Sequencing of the entire CYP21A2 gene revealed a novel insertion (duplication) of 9-bp in exon 2 of one allele and a well-known mutation I172N in exon 4 of other allele. Molecular modeling and simulation studies were carried out to understand the plausible structural and functional implications caused by the novel mutation.

Results

Insertion of the nine bases in exon 2 resulted in addition of three valine residues at codon 71 of the P450c21 protein. Molecular dynamics simulations revealed that the mutant exhibits a faster unfolding kinetics and an overall destabilization of the structure due to the triple valine insertion was also observed.

Conclusion

The novel 9-bp insertion in exon 2 of CYP21A2 genesignificantly lowers the structural stability of P450c21 thereby leading to the probable loss of its function.  相似文献   

5.
Deleterious mutations in the CYP21 (steroid 21-hydroxylase) gene cause congenital adrenal hyperplasia (CAH). These mutations usually result from recombinations between CYP21 and an adjacent pseudogene, CYP21P, including deletions and transfers of deleterious mutations from CYP21P to CYP21 (gene conversions). Additional rare mutations that are not gene conversions account for 5-10% of 21-hydroxylase deficiency alleles. Recently, four novel CYP21 point mutations leading to amino acid changes were identified in a population of 57 Spanish families with CAH. A nonsense mutation, K74X, was also identified. The enzymatic activities of 21-hydroxylase mutants G90V, G178A, G291C, and R354H were examined in transiently transfected CHOP cells using progesterone and 17alpha-hydroxyprogesterone as substrates. The G90V, G291C, and R354H mutations effectively eliminated 21-hydroxylase activity. However, the G178A mutant retained significant activity when 17alpha-hydroxyprogesterone was the substrate. These results correlate well with the identification of G90V, G291C, and R354H in patients with severe "salt-wasting" disease and G178A in a patient with the milder simple virilizing form.  相似文献   

6.
The spectrum of mutations in the steroid 21-hydroxylase gene (CYP21B) and the frequency of 11 mutations among 66 patients with different forms of congenital adrenal hyperplasia (CAH) were analyzed by means of PCR amplification. Each of the CAH forms was characterized by specific spectrum of diagnostically important mutations. The salt-losing (SL) form of the disease was most frequently associated with gene deletion (39%) and the 668-13C-G mutation in the second intron (23.5%), whereas the majority of simple virilizing (SV) CAH cases were associated with the 1172N mutation in exon 4 (22%), gene deletion (16.5%), and the 668-13C-G mutation (16.5%). Mutations in the steroid 21-hydroxylase gene were detected in 70% of the chromosomes from the patients with the SL and SV forms of CAH, and only in 1.3% of the chromosomes from the patients with the nonclassic (NC) form. A total of 78 mutant chromosomes from the NC CAH patients were examined, and only one case of a gene deletion in the heterozygous state was revealed. In the individuals examined, the V281L and P30L mutations described in the NC CAH patients from other populations were not detected. This result can be explained either by the fact that NC CAH cases in Russia are associated with other major mutations, or by difficult clinical diagnosis questionable CAH cases.  相似文献   

7.
Congenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency is a common inherited defect of adrenal steroid hormone biosynthesis. Unusually for genetic disorders, the majority of mutations causing CAH apparently result from recombinations between the CYP21 gene encoding the 21-hydroxylase enzyme and the closely linked, highly homologous pseudogene CYP21P. The CYP21 and CYP21P genes are located in the major histocompatibility complex class III region on chromosome 6p21.3. We analyzed the mutations and recombination breakpoints in the CYP21 gene and determined the associated haplotypes in 51 unrelated Finnish families with CAH. They represent no less than half of all CYP21 deficiency patients in Finland. The results indicate the existence of multiple founder mutation-haplotype combinations in the population of Finnish CAH patients. The three most common haplotypes constituted half of all affected chromosomes; only one-sixth of the haplotypes represented single cases. Each of the common haplotypes was shown consistently to carry a typical CYP21 mutation and only in some cases was additional variation observed. Surprisingly, comparisons with previous published data revealed that several of the frequent mutation-haplotype combinations in Finland are in fact also found in many other populations of patients of European origin, thus suggesting that these haplotypes are of ancient origin. This is in clear contrast to many reports, including the present one, where a high frequency of de novo mutations in the CYP21 gene has been reported. In addition, two unique sequence aberrations in CYP21 (W302X and R356Q), not known to exist in the CYP21P pseudogene, were detected. Received: 5 September 1996 / Revised: 11 November 1996  相似文献   

8.
Summary Defects in the enzyme, steroid 21-hydroxylase, result in congenital adrenal hyperplasia (CAH), a common autosomal recessive disorder of cortisol biosynthesis. The gene encoding this protein (CYP21B) and a closely linked pseudogene (CYP21A) have been mapped in the HLA complex on chromosome 6p, adjacent to the complement genes C4B and C4A, about 80 kb from the factor B gene. Molecular analyses of patients with CAH have shown that the cause of the defect may be either a deletion, a point mutation or a conversion of the active gene. Linkage of the disease to HLA has previously been studied by several groups. We have analyzed DNAs from patients with classical and non-classical CAH and from their family members, by probing with CYP21, C4 and BF cDNAs. In 70% of the CAH haplotypes studied, the defective CYP21B gene was indistinguishable from its structurally intact corresponding gene in Southern blot analysis, and presumably bore point mutations. In the remaining chromosomes, evidence for gene conversions, deletions and various deleterious mutations of the CYP21B gene is given. Moreover, our linkage studies show that a polymorphic TaqI cleavage site in the factor B gene, recently described by us, may be a new and useful genetic marker, because we found this TaqI restriction site only in unaffected haplotypes carrying functional CYP21B genes and, therefore, in negative association with the defective CYP21B gene.  相似文献   

9.
Mizrachi D  Wang Z  Sharma KK  Gupta MK  Xu K  Dwyer CR  Auchus RJ 《Biochemistry》2011,50(19):3968-3974
Human cytochrome P450c21 (steroid 21-hydroxylase, CYP21A2) catalyzes the 21-hydroxylation of progesterone (P4) and its preferred substrate 17α-hydroxyprogestrone (17OHP4). CYP21A2 activities, which are required for cortisol and aldosterone biosynthesis, involve the formation of energetically disfavored primary carbon radicals. Therefore, we hypothesized that the binding of P4 and 17OHP4 to CYP21A2 restricts access of the reactive heme-oxygen complex to the C-21 hydrogen atoms, suppressing oxygenation at kinetically more favorable sites such as C-17 and C-16, which are both hydroxylated by cytochrome P450c17 (CYP17A1). We reasoned that expansion of the CYP21A2 substrate-binding pocket would increase substrate mobility and might yield additional hydroxylation activities. We built a computer model of CYP21A2 based principally on the crystal structure of CYP2C5, which also 21-hydroxylates P4. Molecular dynamics simulations indicate that binding of the steroid nucleus perpendicular to the plane of the CYP21A2 heme ring limits access of the heme oxygen to the C-21 hydrogen atoms. Residues L107, L109, V470, I471, and V359 were found to contribute to the CYP21A2 substate-binding pocket. Mutation of V470 and I471 to alanine or glycine preserved P4 21-hydroxylase activity, and mutations of L107 or L109 were inactive. Mutations V359A and V359G, in contrast, acquired 16α-hydroxylase activity, accounting for 40% and 90% of the P4 metabolites, respectively. We conclude that P4 binds to CYP21A2 in a fundamentally different orientation than to CYP17A1 and that expansion of the CYP21A2 substrate-binding pocket allows additional substrate trajectories and metabolic switching.  相似文献   

10.
BACKGROUND: Most patients with 21-hydroxylase deficiency (21-OHD) are compound heterozygous carriers. Their phenotype usually reflects a less severe allelic mutation, although discordance between the genotype and the phenotype has been observed. CASE REPORT: We present 5 patients with congenital adrenal hyperplasia (CAH) due to 21-OHD belonging to the 3 generations of the same family (grandmother, parents and their 2 children). As each patient carries at least one mild mutation of the CYP21 gene, their genotypes correspond to nonclassical CAH. The propositus is the older brother, who is compound heterozygous with a mild and severe CYP21 mutation (P30L/R356W). In spite of one mild CYP21 mutation, he presented with the clinical picture of a simple virilizing form of 21-OHD and required glucocorticoid replacement therapy from the age of 4. Both probands' parents are compound heterozygous carriers of different CYP21 gene mutations causing various degrees of enzymatic activity impairment, which explains the different genotypes and phenotypes in their offspring. The probands' mother, besides the nonclassical 21-OHD, also had neuroblastoma of the adrenal gland. CONCLUSION: The potential discordance between the genotype and the phenotype in some patients with CAH is emphasized. The existence of a mild CYP21 mutation P30L in a compound heterozygous with CAH might be associated with progressive virilization requiring glucocorticoid therapy from early childhood. The occurrence of neuroblastoma with 21-OHD may support the hypothesis that an impairment in the synthesis and secretion of glucocorticoids may play role in the development and functioning of the adrenal medulla.  相似文献   

11.
Steroid 21-hydroxylase deficiency is the leading cause of impaired cortisol synthesis in congenital adrenal hyperplasia (CAH). We have studied the structure of the CYP21B gene in 30 unrelated CAH patients using the polymerase chain reaction (PCR) to differentiate the active CYP21B gene from its highly related CYP21A pseudogene. The PCR approach obviates the need to distinguish the CYP21A and CYP21B genes by restriction endonuclease digestion and electrophoresis before analysis with labeled probes. Furthermore, direct nucleotide sequence analysis of CYP21B genes is demonstrated on the PCR-amplified DNA. Gene deletion of CYP21B, gene conversion of the entire CYP21B gene to CYP21A, frame shift mutations in exon 3, an intron 2 mutation that causes abnormal RNA splicing, and a mutation leading to a stop codon in exon 8 appear to be the major abnormalities of the CYP21B gene in our patients. These mutations appear to account for 21-hydroxylase deficiency in 22 of 26 of our salt-wasting CAH patients.  相似文献   

12.
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease of steroid biosynthesis in humans. More than 90% of all CAH cases are caused by mutations of the 21-hydroxylase gene (CYP21A2), and approximately 75% of the defective CYP21A2 genes are generated through an intergenic recombination with the neighboring CYP21A1P pseudogene. In this study, the CYP21A2 gene was genotyped in 50 patients in Tunisia with the clinical diagnosis of 21-hydroxylase deficiency. CYP21A2 mutations were identified in 87% of the alleles. The most common point mutation in our population was the pseudogene specific variant p.Q318X (26%). Three novel single nucleotide polymorphism (SNP) loci were identified in the CYP21A2 gene which seems to be specific for the Tunisian population. The overall concordance between genotype and phenotype was 98%. With this study the molecular basis of CAH has been characterized, providing useful results for clinicians in terms of prediction of disease severity, genetic and prenatal counseling.  相似文献   

13.
Molecular defects in the gene encoding steroid 21-hydroxylase (CYP21) result in impairment of adrenal steroid synthesis in patients affected with autosomal-recessive congenital adrenal hyperplasias (CAH). In this study, we report on the molecular screening of six point mutations, large deletions, gene conversion events and duplications in 25 unrelated Lebanese families affected by CAH due to steroid 21-hydroxylase. The methods used (PCR-digestion and southern blot) allowed the detection of 96% of the disease chromosomes. In classical forms, the most frequent mutation was the splice site mutation in intron 2 accounting for 39% of the disease alleles. Gene conversion events accounted for 14% of the alleles, but no large deletions were found. In nonclassical forms, the V281L mutation in exon 7 represent 86% of the tested alleles. Genotype-phenotype correlations were as expected: Delta 8nt, Q318X and gene conversion correspond to SW forms, whereas the intron 2 splice site mutation may give either SW or SV forms; the V281L mutation was responsible for nonclassical forms. The spectrum of mutations underlines the genetic diversity of the Lebanese population. No correlation could be drawn out between mutations and some specific religious communities, except for the Delta 8nt mutation, which is present only in the Christian Maronite group. Molecular study of the CYP21 gene might constitute a good support for clinicians, especially in consanguineous families, for whom we could provide genetic counselling.  相似文献   

14.

Background

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2). We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH.

Methods

A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay.

Results

Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6%) chromosomes. The most frequent mutation was I2 splice (27%) followed by Ile173Asn (26%), Arg 357 Trp (19%), Gln319stop, 16% and Leu308InsT (12%), whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state.

Conclusion

Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.  相似文献   

15.
Congenital adrenal hyperplasia (CAH) is a common recessive genetic disease caused mainly by steroid 21-hydroxylase (P450c21) deficiency. Many forms of CAH exist resulting from various mutations of the CYP21B gene. We sequenced CYP21B cDNA from a normal person and its genes from a patient with simple virilizing CAH. When comparing several CYP21B sequences, we found it was polymorphic. In the patient, a single base substitution replaced Ile172 (ATC) with Asn (AAC) in one allele while Arg356 (CGG) was converted to Trp (TGG) in the other. A normal P450c21 cDNA clone was transfected into COS-1 cells to produce 21-hydroxylase activity toward its substrates, progesterone and 17-hydroxyprogesterone. Mutants corresponding to Asn172 or Trp356 mutation were constructed by site-directed mutagenesis of the normal c21 cDNA clone. They failed to produce active enzyme toward either substrate upon transfection into COS-1 cells, demonstrating that these mutations caused CAH. Aligning sequences with other P450s, Ile172 could be located in the membrane anchoring domain and Arg356 in the substrate-binding site of P450c21. Both mutations are present in the CYP21A1P pseudogene, suggesting that they may be transferred from CYP21A1P by gene conversion events.  相似文献   

16.
Summary A total of 33 Italian 21-hydroxylase (21-OH) deficiency families were investigated using a combination of short and long range restriction mapping of the CYP21/C4 gene cluster. The analyses revealed that large-scale length polymorphism in this gene cluster strictly conformed to a compound variable number of tandem repeats (VNTR) plus insertion system with between one and four CYP21 + C4 units and seven BssHII restriction fragment length polymorphisms (RFLPs) (75kb, 80kb, 105kb, 110kb, 135kb, 140kb and 180kb). A total of 9/66 disease haplotypes, but only 1/61 nondisease haplotypes, showed evidence of gene addition by exhibiting three or more CYP21 + C4 repeat units. Of these, two were identified in one 21-OH deficiency patient who has a total of eight CYP21 + C4 units, being homozygous for the HLA haplotype DR2 DQ2 B5 A28. This haplotype carries four CYP21 + C4 units, three of which contain CYP21A-like genes and one of which contains a CYP21B-like gene that presumably carries a pathological point mutation. Of the other gene addition haplotypes associated with 21-OH deficiency, four show three CYP21 + C4 units flanked by HLA-DR1 and HLA-B14 markers. Although such haplotypes have commonly been associated with non-classical 21-OH deficiency, three examples in the present study are unexpectedly found in two salt-wasting patients, who are respectively homozygous or heterozygous for this haplotype. Only 7/66 disease haplotypes showed evidence of a CYP21B gene deletion.  相似文献   

17.
Congenital adrenal hyperplasia caused by 21-hydroxylase deficiency is a common autosomal recessive disorder resulting from mutations in the 21-hydroxylase (CYP21) gene. To develop a strategy to screen for the most commonly occurring CYP21 mutations in Brazil, we performed molecular genotype analysis on 73 children with CAH representing 71 unrelated families. The techniques used for CYP21 molecular genotype analysis were: restriction fragment length polymorphism, single-strand conformational polymorphism, allele-specific oligonucleotide hybridization, allele-specific polymerase chain reaction amplification, and heteroduplex analyses. Mutations were identified on all but eight affected alleles. The intron 2 splicing mutation was the most frequently identified mutation. Screening for the most common mutations detected at least one mutation on 132/142 (93%) alleles. Multiple CYP21 mutations were detected on 16.2% of alleles. The high frequency of multiple mutations on a single allele emphasizes the importance of thorough and accurate molecular genotype analysis of the complex CYP21 locus.  相似文献   

18.
Mornet E  Gibrat JF 《Human genetics》2000,106(3):330-339
In order to better understand the disease-causing role of missense mutations found in the CYP21 gene from patients affected with congenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency, we built two three-dimensional (3D) models of human P450c21 using all known 3D structures of P450s. For each residue affected by a missense mutation, its location in the 3D structure and the putative changes in terms of biochemical properties brought about by the mutation were analyzed. Most of the severe alleles were found to affect residues located in functionally important regions of the molecule such as substrate recognition sites (SRS) or the heme region, whereas moderate mutations were mostly found in less crucial regions of the molecule. Thus, there is a good correlation between the 3D structure study and clinical data and mutagenesis experiments previously reported. In one case, however, the observed clinical severity of the mutation (E380D) did not match its expected severity deduced from the model, pointing to a potential functionally important region of the molecule. Our 3D human models provide a basic model for further studies of mutations responsible for 21-hydroxylase, and for identification of important residues involved in the specific activity of the enzyme.  相似文献   

19.
Steroid 21-hydroxylase deficiency, the primary cause of congenital adrenal hyperplasia, is caused by defects of the CYP21A2 gene. As a complement to hormonal measurements, mutation analysis of CYP21A2 is an important tool in the diagnosis of steroid 21-hydroxylase deficiency. Contemporary mutation-detection protocols based on the polymerase chain reaction often depend on the assumption that no more than one CYP21A2 gene is present on each chromosome 6. We describe three haplotypes with two CYP21A2 genes on the same chromosome, with defects typical of salt-losing steroid 21-hydroxylase deficiency in one of those genes, but not necessarily in the other. The frequency of these haplotypes in the general population is 6/365 (1.6%), so they are no less common than other haplotypes that indeed carry steroid 21-hydroxylase deficiency. Chromosomes that carry two CYP21A2 genes therefore represent a significant pitfall in the molecular diagnosis of steroid 21-hydroxylase deficiency. We recommend that, whenever CYP21A2 mutation analysis of an individual who is not a known carrier of steroid 21-hydroxylase deficiency is performed, the overall structure of the CYP21/ C4 region (the RCCX area) is determined by haplotyping to avoid erroneous assignment of carrier status.  相似文献   

20.
The gene CYP21B, encoding the steroid 21-hydroxylase enzyme of adrenal steroid biosynthesis, has been mapped to the human major histocompatibility complex (MHC). Deficiency of this enzyme leads to congenital adrenal hyperplasia (CAH). We report the phenotypes of the HLA and complement C4 and Bf genes, which are closely linked to the CYP21B gene, together with a detailed analysis of the CYP21 and C4 RFLP, in 17 Finnish families with CAH. The RFLP analysis with six restriction enzymes suggested that, altogether, 35% of the affected chromosomes had a CYP21B + C4B gene deletion, 9% an obvious gene conversion of the CYP21B gene to a CYP21A-like gene, and 3% a CYP21A + C4B duplication. The remaining 53% gave the RFLP patterns also found in nonaffected chromosomes. We also found that a 14.0-kb EcoRI RFLP marker of the CYP21 genes was strongly associated with the presence of a short C4B gene, suggesting that some of the RFLP markers found with the CYP21 probe may actually derive from C4B gene polymorphism. Three particular MHC haplotypes, each with a characteristic RFLP pattern, were found in many unrelated families. These three haplotypes accounted for 59% of the affected chromosomes in our study group, the rest (41%) of the affected chromosomes being distributed among various subtypes. The results suggest that, within a single, well-defined population such as in Finland, only a few CYP21B gene defects may constitute a substantial part of the affected chromosomes. This finding will help in genetic studies of CAH in such populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号