首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial sepsis is frequently accompanied by increased blood concentration of lactic acid, which traditionally is attributed to poor tissue perfusion, hypoxia and anaerobic glycolysis. Therapy aimed at improving oxygen delivery to tissues often does not correct the hyperlactatemia, suggesting that high blood lactate in sepsis is not due to hypoxia. Various tissues, including skeletal muscle, demonstrate increased lactate production under well-oxygenated conditions when the activity of the Na+-K+ ATPase is stimulated. Although both muscle Na+-K+ ATPase activity and muscle plasma membrane content of Na+, K+-ATPase subunits are increased in sepsis, no studies in vivo have demonstrated correlation between lactate production and changes in intracellular Na+ and K+ resulting from increased Na+-K+ pump activity in sepsis. Plasma concentrations of lactate and epinephrine, a known stimulator of the Na+-K+ pump, were increased in rats made septic by E. coli injection. Muscle lactate content was significantly increased in septic rats, although muscle ATP and phosphocreatine remained normal, suggesting oxygen delivery remained adequate for mitochondrial energy metabolism. In septic rats, muscle intracellular ratio of Na+:K+ was significantly reduced, indicating increased Na+-K+ pump activity. These data thus demonstrate that increased muscle lactate during sepsis correlates with evidence of elevated muscle Na+-K+ ATPase activity, but not with evidence of impaired oxidative metabolism. This study also further supports a role for epinephrine in this process.  相似文献   

2.
Polar redistribution of Na+K+ATPase in aggregating MDCK cells   总被引:6,自引:0,他引:6  
The distribution of Na+K+ATPase was examined immunoelectronmicroscopically along the plasma membranes of aggregating MDCK cells grown in tissue culture. Na+K+ATPase was localized with the use of affinity-purified antibodies employing the double-antibody immunoperoxidase technique. Na+K+ATPase-like immunoreactivity was uniformly distributed along the plasmalemma of cells grown in suspension. Once attached to the substratum, individual MDCK cells exhibited Na+K+ATPase immunoreactivity limited to the microvilli-laden mucosal surface. This exclusive mucosal distribution of Na+K+ATPase disappeared and a basolateral immunoreactivity became apparent once intercellular contacts and the formation of tight junctions occurred between neighboring cells. Thus, both cellular attachment to the substratum, and tight junction formation between aggregating MDCK cells are essential to the genesis of Na+K+ATPase polar distribution. These two events, however, appear to induce opposing distribution patterns for Na+K+ATPase.  相似文献   

3.
Alzheimer's disease (AD) is associated with impaired glutamate clearance and depressed Na(+)/K(+) ATPase levels in AD brain that might lead to a cellular ion imbalance. To test this hypothesis, [Na(+)] and [K(+)] were analyzed in postmortem brain samples of 12 normal and 16 AD individuals, and in cerebrospinal fluid (CSF) from AD patients and matched controls. Statistically significant increases in [Na(+)] in frontal (25%) and parietal cortex (20%) and in cerebellar [K(+)] (15%) were observed in AD samples compared to controls. CSF from AD patients and matched controls exhibited no differences, suggesting that tissue ion imbalances reflected changes in the intracellular compartment. Differences in cation concentrations between normal and AD brain samples were modeled by a 2-fold increase in intracellular [Na(+)] and an 8-15% increase in intracellular [K(+)]. Since amyloid beta peptide (Aβ) is an important contributor to AD brain pathology, we assessed how Aβ affects ion homeostasis in primary murine astrocytes, the most abundant cells in brain tissue. We demonstrate that treatment of astrocytes with the Aβ 25-35 peptide increases intracellular levels of Na(+) (~2-3-fold) and K(+) (~1.5-fold), which were associated with reduced levels of Na(+)/K(+) ATPase and the Na(+)-dependent glutamate transporters, GLAST and GLT-1. Similar increases in astrocytic Na(+) and K(+) levels were also caused by Aβ 1-40, but not by Aβ 1-42 treatment. Our study suggests a previously unrecognized impairment in AD brain cell ion homeostasis that might be triggered by Aβ and could significantly affect electrophysiological activity of brain cells, contributing to the pathophysiology of AD.  相似文献   

4.
This study investigates the functioning of synaptosomal ouabain-sensitive Na+ -K+ -ATPase in cold-induced edema. During vasogenic brain edema development, the enzyme affinities for Na+ and K+ are progressively decreased paralleling the increase in the tissue water content, whereas maximal velocity of the reaction is not changed. On the basis of these data, it is likely that Na+ -K+ -ATPase impairment accounts for the intracellular uptake of water in this model of edema.  相似文献   

5.
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles.  相似文献   

6.
The Na+,K+ pump of resealed human red cell ghosts is more sensitive to inhibition by intracellular Ca (Cai) when they contain diluted hemolysate compared to ghosts without hemolysate. The activity of the Na+,K+ pump was assessed by measuring ouabain-sensitive 22Na efflux in ghosts that, in addition to the presence or absence of hemolysate, also contained arsenazo III to measure free Cai and a regenerating system to maintain a constant concentration of ATP. Incorporating hemolysate diluted 20-fold compared to in situ conditions doubled the inhibitory effects of 1-50 microM free Cai on the Na+,K+ pump and caused 50% inhibition to occur between 5 and 10 microM free Cai. Increased inhibition in the presence of the hemolysate was not due to a cytoplasm-induced decrease in the ATP content of the ghosts. These findings are consistent with the suggestion that the cytoplasm of human red cells contains a factor which increases the sensitivity of the Na+,K+ pump to inhibition by Cai.  相似文献   

7.
1. Ascorbic acid, diamide and N-ethylmaleimide inhibit Na+ + K+-ATPase activity in toad corneal epithelium. 2. Ascorbic acid, diamide and N-ethylmaleimide increase alpha-aminoisobutyric acid accumulation in this tissue. 3. The effects of these compounds on corneal amino acid and ion transport are not mediated through alterations in Na+ + K+-ATPase activity.  相似文献   

8.
ATP plus Mg2+ plus Na+ supported [3H]ouabain binding to canine left ventricular tissue homogenates and microsomal (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity from the same tissue were measured. A linear relationship was found between the initial velocity of [3H]ouabain binding to tissue homogenates and microsomal (Na+ + K+)-ATPase activity from the same tissue in the presence and absence of in vivo bound digoxin. In vivo bound digoxin reduced both measurements. With tissue from digoxin-free hearts, a linear relationship was also obtained between the initial velocity and the maximum level of [3H]ouabain binding to tissue homogenate. Binding of [3H]ouabain to whole tissue homogenate is a convenient method for estimating (Na+ + K+)-ATPase activity in small left ventricular biopsy samples.  相似文献   

9.
Na+ + K+] ATP-ase in liver and brain of obese mice   总被引:1,自引:0,他引:1  
The activity of hepatic [Na+ + K+]ATP-ase showed a gene-dosage relationship in 6 week old mice. Before weaning hepatic [Na+ + K+]ATP-ase activity was normal in preobese mice but fell within 7 days of weaning to the low levels observed in older ob/ob mice. Brain [Na+ + K+]ATP-ase activity was unchanged in ob/ob mice although [3H]-ouabain binding was reduced. Arrhenius plots of [Na+ + K+]ATP-ase activity in liver and brain and of [3H]-ouabain binding to brain preparations showed breakpoints at lower temperatures in ob/ob than lean mice. These breakpoints were altered by pretreatment of tissue with deoxycholate. It is suggested that changes in membrane lipid composition might be an important factor regulating [Na+ + K+]ATP-ase in ob/ob mice.  相似文献   

10.
86Rb+ was used as an isotopic tracer for the measurement of K+-uptake into quiescent murine bone marrow-derived macrophages. 86Rb+ uptake was inhibited by ouabain indicating a Na+K+-ATPase is being measured. In support of this finding, increased sensitivity to ouabain inhibition was seen when the K+ content of the medium was reduced. A purified colony stimulating factor (CSF-1) was shown to stimulate the ouabain-sensitive 86Rb+ uptake in a dose-dependent manner. Such colony stimulating factor stimulation of 86Rb+ (K+) influx was rapid, with a maximal effect seen 10 minutes after growth factor addition followed by a gradual decrease. Thus increased Na+K+-ATPase activity was an early response of macrophages to the colony stimulating factor.  相似文献   

11.
Distribution of immunoreactive Na+,K+-ATPase in gerbil cochlea   总被引:6,自引:0,他引:6  
The distribution of Na+,K+-ATPase was mapped in cochleas of mature gerbils with normal hearing, using a specific and sensitive immunocytochemical method. Na+,K+-ATPase was abundant in the basolateral plasma membrane of marginal cells in the stria vascularis. Considerable levels of enzyme were also associated with the surfaces of spiral ganglion neurons and their central and peripheral processes. An unexpected finding was the detection of high levels of immunoreactive Na+,K+-ATPase in three different populations of cells lying in the inferior portion of the spiral ligament and at the medial and lateral border of the scala vestibuli just superior to the attachment of Reissner's membrane. Cells in these areas shared the morphological characteristics of cells specialized for active transport but appeared to be nonpolarized, suggesting a uniform distribution of Na+,K+-ATPase over their entire plasmalemma. The presence of these three distinct cell populations in the cochlea of several mammalian species suggests that they play an important role in cochlear function, perhaps that of regulating the cation content of perilymph. The absence of discrete concentrations of Na+,K+-ATPase-rich cells in the perilymphatic connective tissue of the bird cochlea and the mammalian vestibular system suggests further that these cells may be involved with generating and maintaining the high endolymphatic potential unique to the mammalian cochlea.  相似文献   

12.
In order to understand the salt-tolerance mechanism of alkali grass (Puccinellia tenuiflora) compared with wheat (Triticum aestivum L.), [K(+)] and [Na(+)] in roots and shoots in response to salt treatments were examined with ion element analysis and X-ray microanalysis. Both the rapid K(+) and Na(+) influx in response to different NaCl and KCl treatments, and the accumulation of K(+) and Na(+) as the plants acclimated to long-term stress were studied in culture- solution experiments. A higher K(+) uptake under normal and saline conditions was evident in alkali grass compared with that in wheat, and electrophysiological analyses indicated that the different uptake probably resulted from the higher K(+)/Na(+) selectivity of the plasma membrane. When external [K(+)] was high, K(+) uptake and transport from roots to shoots were inhibited by exogenous Cs(+), while TEA (tetraethylammonium) only inhibited K(+) transport from the root to the shoot. K(+) uptake was not influenced by Cs(+) when plants were K(+) starved. It was shown by X-ray microanalysis that high [K(+)] and low [Na(+)] existed in the endodermal cells of alkali grass roots, suggesting this to be the tissue where Cs(+) inhibition occurs. These results suggest that the K(+)/Na(+) selectivity of potassium channels and the existence of an apoplastic barrier, the Casparian bands of the endodermis, lead to the lateral gradient of K(+) and Na(+) across root tissue, resulting not only in high levels of [K(+)] in the shoot but also a large [Na(+)] gradient between the root and the shoot.  相似文献   

13.
Spermine and spermidine inhibit the (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) reaction so that the effect increases as the ionic content due to Na+ and K+ in the reaction is reduced. Several other amines inhibit (Na+ + K+)-ATPase to varying degress and methylglyoxal-bis-(guanylhydrazone) was the most potent inhibitor among those tested. The inhibition by polyamines of the ATPase is uncompetitive with respect to Mg2+ and ATP activation of the reaction. Various naturally occurring polyamines and other amines inhibited Na+ activation of (Na+ + K+)-ATPase as well as Na+-dependent phosphoenzyme formation in an apparently competitive manner with respect to Na+. Likewise, K+-activation of (Na+ + K+)-ATPase as well as K+-p-nitrophenyl phosphatase was inhibited in an apparently competitive manner with respect to K+. Both the cation charge and structure (e.g., aliphatic chain length) may contribute to the inhibitory effects of the amines; however, Na+ sites appear to be more sensitive to cation charge than the aliphatic chain length of the amine, whereas the opposite appears to be true for K+ sites. The results do not indicate a specific effect of polyamines on (Na+ + K+)-ATPase or its partial reactions.  相似文献   

14.
Electrochemical properties of Na+-selective glass microelectrodes were studied and compared with those of K+-selective glass microelectrodes. The selectivity of Na+-selective glass microelectrodes depended on the ion concentration of test solutions. With aging, resistance of Na+-selective microelectrodes increased and their selectivity for Na over K decreased. Na+-selective microelectrodes potential measured in NaCl solution remained constant with aging, while the potential measured in KCl solution decreased and became more positive. The changes in resistance and potential of Na+-selective microelectrodes may be due to the effects of the less mobile cation, i.e., H+ or K+ on the Na ion exchange in the Na-sensing region. The results indicate that Na+-selective microelectrodes must be used as soon after filling as possible. The selectivity of Na+-selective microelectrodes increased with increase of the sensitive exposed-tip length, whereas their response time became slow due to a large recessed volume, indicating requirement of an optimum exposed-tip length for intracellular applications. The changes in the properties of Na+-selective glass microelectrodes with aging contrasted with those of K+-selective glass microelectrodes in which resistance decreased and K+-selectivity increased. The K+-selective microelectrodes required aging before use for a high selectivity and low resistance. The K+-selective microelectrodes with low resistance after sufficient aging can be used without insulation to measure K+ and Na+ activities in aqueous solutions. The different properties between Na+- and K+-selective microelectrodes are understandable, because hydration of N+-selective glass is much less extensive than that of K+-selective glass.  相似文献   

15.
Changes in the activity of Na+,K+-ATPase and in the water, Na+, and K+ levels in the parietal cortex, hippocampus, and thalamus were investigated in rats 1, 3, 6, and 24 h following systemic kainic acid injection. An increase in Na+,K+-ATPase activity was observed in all three regions 3 h after the treatment, with a subsequent decrease in enzyme activity. The elevation in Na+,K+-ATPase activity was accompanied by an increase in the Na+ content and a decrease in the K+ content. These changes are presumed to occur because of repeated discharges and excessive prolonged depolarization in response to kainic acid. The decreases in Na+,K+-ATPase activity 6 and 24 h following kainic acid treatment coincide with neuropathological damage and edema formation, mainly in the hippocampus and thalamus.  相似文献   

16.
Neurotoxins which modify the gating system of the Na+ channel in neuroblastoma cells and increase the initial rate of 22Na+ influx through this channel also give rise to the efflux of 86Rb+ and 42K+. These effluxes are inhibited by tetrodotoxin and are dependent on the presence in the extracellular medium of cations permeable to the Na+ channel. These stimulated effluxes are not due to membrane depolarization or increases in the intracellular content of Na+ and Ca2+ which occur subsequent to the action of neurotoxins. The relationships of 22Na+ influx and 42K+ (or 86Rb+) effluxes to both the concentration of neurotoxins and the concentration of external permeant cations strongly suggest that the open form of the Na+ channel stabilized by neurotoxins permits an efflux of K+ ions. Our results indicate that for the efflux of each K+ ion there is a corresponding influx of two Na+ ions into the Na+ channel.  相似文献   

17.
The interaction of sodium and potassium ions in the context of the primary entry of Na(+) into plant cells, and the subsequent development of sodium toxicity, has been the subject of much recent attention. In the present study, the technique of compartmental analysis with the radiotracers (42)K(+) and (24)Na(+) was applied in intact seedlings of barley (Hordeum vulgare L.) to test the hypothesis that elevated levels of K(+) in the growth medium will reduce both rapid, futile Na(+) cycling at the plasma membrane, and Na(+) build-up in the cytosol of root cells, under saline conditions (100 mM NaCl). We reject this hypothesis, showing that, over a wide (400-fold) range of K(+) supply, K(+) neither reduces the primary fluxes of Na(+) at the root plasma membrane nor suppresses Na(+) accumulation in the cytosol. By contrast, 100 mM NaCl suppressed the cytosolic K(+) pool by 47-73%, and also substantially decreased low-affinity K(+) transport across the plasma membrane. We confirm that the cytosolic [K(+)]:[Na(+)] ratio is a poor predictor of growth performance under saline conditions, while a good correlation is seen between growth and the tissue ratios of the two ions. The data provide insight into the mechanisms that mediate the toxic influx of sodium across the root plasma membrane under salinity stress, demonstrating that, in the glycophyte barley, K(+) and Na(+) are unlikely to share a common low-affinity pathway for entry into the plant cell.  相似文献   

18.
AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta   总被引:3,自引:0,他引:3       下载免费PDF全文
Genetic and physiological data establish that Arabidopsis AtHKT1 facilitates Na(+) homeostasis in planta and by this function modulates K(+) nutrient status. Mutations that disrupt AtHKT1 function suppress NaCl sensitivity of sos1-1 and sos2-2, as well as of sos3-1 seedlings grown in vitro and plants grown in controlled environmental conditions. hkt1 suppression of sos3-1 NaCl sensitivity is linked to higher Na(+) content in the shoot and lower content of the ion in the root, reducing the Na(+) imbalance between these organs that is caused by sos3-1. AtHKT1 transgene expression, driven by its innate promoter, increases NaCl but not LiCl or KCl sensitivity of wild-type (Col-0 gl1) or of sos3-1 seedlings. NaCl sensitivity induced by AtHKT1 transgene expression is linked to a lower K(+) to Na(+) ratio in the root. However, hkt1 mutations increase NaCl sensitivity of both seedlings in vitro and plants grown in controlled environmental conditions, which is correlated with a lower K(+) to Na(+) ratio in the shoot. These results establish that AtHKT1 is a focal determinant of Na(+) homeostasis in planta, as either positive or negative modulation of its function disturbs ion status that is manifested as salt sensitivity. K(+)-deficient growth of sos1-1, sos2-2, and sos3-1 seedlings is suppressed completely by hkt1-1. AtHKT1 transgene expression exacerbates K(+) deficiency of sos3-1 or wild-type seedlings. Together, these results indicate that AtHKT1 controls Na(+) homeostasis in planta and through this function regulates K(+) nutrient status.  相似文献   

19.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significance in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca-2+ up to 300 pmol/mg protein of a K+ -resistant, ADP-sensitive material were formed. If phosphorylation was from [gamma-32-P]CTP up to 800 pmol-32-P/mg protein of an ADP-resistant, K+ -sensitive phosphorylated material were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+ -stimulated, K+ -sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

20.
INHIBITION OF AMINO ACID UPTAKE BY THE ABSENCE OF Na+ IN SLICES OF BRAIN   总被引:5,自引:5,他引:0  
—The Na+ requirement of amino acid transport was measured in brain slices. The tissue was first washed free of Na+ and then Na+ was replaced by one of the following: choline, Li+, Rb+, or mannose. Amino acid uptake was measured at different times (5–120 min) and at low (10-7–10-5m ) and high (10-3m ) concentrations. Most of the Na+ could be washed out of the tissue; this also decreased K+ levels despite increased K+ in the medium. K+ tissue levels were partially restored when Na+ was added. The absence of Na+ abolished the uptake of Glu, Asp, GABA, Gly, Tau and Pro. Most of the neutral amino acids (Ala, Val, Trp, His) were very strongly inhibited by the absence of Na+ under most experimental conditions. Basic amino acids (Arg, Lys) were not completely inhibited, in that 30 per cent of the equilibrium uptake remained and some of the basic amino acid influx was independent of the Na+ tissue level. The uptake of amines (tyramine, cadaverine, putrescine) did not require Na+, and often was greater in the absence of Na+. We conclude that amino acid uptake in brain slices is Na+ dependent, although the absence of Na+ may affect transport indirectly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号